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Introduction

Statistical analysis of experimental data

Quantitative research, not only in physics, involve different stages:

design of the experiment
It can require building a dedicated experiment (physics, astronomy), preparing survey
forms (social sciences) or defining test and control population (medical sciences).

running the experiment: actual measurement
We run the experiment and collect data. We usually try to express the result of the
experiment in numerical form...

Experiment can result in single measurement (single number). But we usually prefer to
have a large number of equivalent measurements...

Statistical analysis and interpretation of the results
This is what we will focus on in this course...

Statistical analysis is also required for proper experiment design.
It is similarly important for interpretation of “single measurements”...
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Introduction

Statistical analysis of experimental data

The goal of this lecture is to present basic concepts and methods of statistical analysis of
experimental data...

We will quite often refer to problems encountered in the elementary particle physics,
as this is the perfect test ground for statistical analysis

This is because all particles (of the same type) are identical.
We can easily assure same initial conditions for the repeated measurement...
This is often a fundamental problem in social or medical sciences...

The knowledge of particle physics is not required (but for some fundamental concepts like the
invariant mass or mean lifetime) and the presented analysis methods can clearly be used also
in other fields of science...
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Introduction

Typical problems adapted from book by S.Brandt

We measure properties of the selected individuals from a large population
(could be elementary particles of a given type).
What is the precision of the measurement?
How large the test sample need to be to obtain given precision?

A certain experimental result has been obtained. It can be compared with other
experiments or with different theoretical predictions.
How to decide, if the results is in agreement with the predicted theoretical value or with
previous experiments?
When can we claim that given theoretical model is excluded?

A general model describing the process studied is known, but parameters of this model
must be obtained from experiment (very common case in particle physics).
What is the optimum procedure for extracting model parameters from the data? How can
the experiment be optimised to give strongest constraints on the model parameters?
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Introduction

Course plan

14 lectures, Thursdays, 9:15 – 12:00, room B2.38
From October 3th, 2024 to January 23th, 2025 (without January 9th!)

Homework exercises
Solutions have to be uploaded to Kampus within two weeks!
Until midnight before the lecture! Proposed solutions will be presented at the lecture.

Written exam, five problems to be solved
Solutions to be uploaded to Kampus within one week!

By uploading the solutions to Kampus you declare that they resulted from your own work and that you

have not shared nor discussed them with anyone.

Assessment criteria

Minimum of 50% of points collected from exercises and exam (with the same weight).
Assessment in September: 50% of points from written examination only.
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A.F.Żarnecki Statistical analysis 01 October 3, 2024 7 / 43



Introduction

Course plan

14 lectures, Thursdays, 9:15 – 12:00, room B2.38
From October 3th, 2024 to January 23th, 2025 (without January 9th!)

Homework exercises
Solutions have to be uploaded to Kampus within two weeks!
Until midnight before the lecture! Proposed solutions will be presented at the lecture.

Written exam, five problems to be solved
Solutions to be uploaded to Kampus within one week!

By uploading the solutions to Kampus you declare that they resulted from your own work and that you

have not shared nor discussed them with anyone.

Assessment criteria

Minimum of 50% of points collected from exercises and exam (with the same weight).
Assessment in September: 50% of points from written examination only.
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Introduction

Solutions

Solutions (dedicated files or printouts of the notebook with the final output)
should be uploaded to Kampus in readable format (PDF preferred).

Upload the Python notebook or add the link to your notebook in Google Colab as a comment!
Please share your Google Colab space with a.zarneckiuw.edu.pl, so I can access your notebook.

More details to be given next week

Web resources

Kampus platform will be used for home exercises and final exam:
https://kampus-kursy.ckc.uw.edu.pl/course/view.php?id=802

All information, including lecture slides will also be available from the dedicated web page:

http://www.fuw.edu.pl/~zarnecki/SAED/

accessible without USOS account...

A.F.Żarnecki Statistical analysis 01 October 3, 2024 8 / 43

https://kampus-kursy.ckc.uw.edu.pl/course/view.php?id=802
http://www.fuw.edu.pl/~zarnecki/SAED/


Introduction

Solutions

Solutions (dedicated files or printouts of the notebook with the final output)
should be uploaded to Kampus in readable format (PDF preferred).

Upload the Python notebook or add the link to your notebook in Google Colab as a comment!
Please share your Google Colab space with a.zarneckiuw.edu.pl, so I can access your notebook.

More details to be given next week
Web resources

Kampus platform will be used for home exercises and final exam:
https://kampus-kursy.ckc.uw.edu.pl/course/view.php?id=802

All information, including lecture slides will also be available from the dedicated web page:

http://www.fuw.edu.pl/~zarnecki/SAED/

accessible without USOS account...
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Introduction

Some references

G. Bohm and G. Zech, Introduction to Statistics and Data Analysis for Physicsts, Verlag
Deutsches Elektronen-Synchrotron, 3rd edition;

S. Brandt, Data Analysis: Statistical and Computational Methods for Scientists and
Engineers, Springer 2014;

M. Bonamente, Statistics and Analysis of Scientific Data, Springer 2017;

R.J. Barlow, Practical Statistics for Particle Physics, PDF from arXiv;

Max Bramer, Principles of Data Mining, Springer 2016;

David Forsyth, Probability and Statistics for Computer Science, Springer 2018;

Particle Physics Reference Library Volume 2 (chapter 15), Springer 2020.
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Basic terms

Experiments

We perform an experiment to collect data.
To allow for statistical analysis we make many measurements...

However, there are always some random factors and results of subsequent measurements are
usually different. It is important to understand where these variations come from!

1 Fluctuations in the measurement results can be due to the actual nature of the physics
process studied. Examples: coin toss, roll of a die, but also particle decay time
measurement or measurement of source radioactivity...

These fluctuations are unavoidable, we can not reduce them.
But usually this is also the most interesting case for us...
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Basic terms

Experiments

We perform an experiment to collect data.
To allow for statistical analysis we make many measurements...

However, there are always some random factors and results of subsequent measurements are
usually different. It is important to understand where these variations come from!

2 Fluctuations can result from the measurement method: finite precision of the instruments
leading to different numerical results, also varying measurement conditions etc.
Examples: measurement of the coin diameter or the die mass,

measurements of the
proton mass, electron charge, speed of light...

We can try to reduce the fluctuations (and thus improve precision)
by adjusting the measurement procedure...
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Basic terms

Experiments

We perform an experiment to collect data.
To allow for statistical analysis we make many measurements...

However, there are always some random factors and results of subsequent measurements are
usually different. It is important to understand where these variations come from!

3 Fluctuations can reflect inhomogeneity of the population studied.
Examples: measurement of the drug effectiveness, answers to questionnaires in various
types of surveys (eg. asking for age),

mass spectrometry, composition and energy spectra
of cosmic rays...

Results will usually depend on the way the tested population sample is selected.
This selection has to be well defined!
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Basic terms

Experiments
It is crucial to correctly identify the source of fluctuations!

Example: coin diameter measurement.

Fluctuations in numerical results can be due to:

finite precision of the instrument there is always some measurement error

the measurement method, how we define the diameter
in particular when the coin is not exactly round

fluctuations in the actual coin size,
if we measure a set of coins, not a single one

⇒ we need to define the problem properly!

In addition to measurement fluctuations, we also need to consider possible systematic effects.
We will come back to this later...
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Basic terms

Experiments Example: influence of the test sample choice.

Age structure of the population of Poland (GUS estimate for 2022).
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Basic terms

Experiments Example: influence of the test sample choice.

Possible result for survey in public park (on working day).
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Basic terms

Experiments Example: influence of the test sample choice.

Possible result for survey at the university campus.
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Basic terms

Elementary event
Outcome of a single experiment (measurement):

result of the roll of a die

observation of N charged particles in the particle collision

observation of nuclear decay after given time

observation of given process, eg. decay K+ → µ+ + νµ

Sample space is the set of all possible outcomes of the experiment
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Elementary event
Outcome of a single experiment (measurement):

result of the roll of a die

observation of N charged particles in the particle collision

observation of nuclear decay after given time

observation of given process, eg. decay K+ → µ+ + νµ

Sample space is the set of all possible outcomes of the experiment

Roll of a die
Six possible outcomes in the sample space: Ω = {1, 2, 3, 4, 5, 6}
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Basic terms

Elementary event
Outcome of a single experiment (measurement):

result of the roll of a die

observation of N charged particles in the particle collision

observation of nuclear decay after given time

observation of given process, eg. decay K+ → µ+ + νµ

Sample space is the set of all possible outcomes of the experiment

Charged particle multiplicity
Particle counting gives non-negative integer number: Ω = {0, 1, 2, . . .}
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Basic terms

Elementary event
Outcome of a single experiment (measurement):

result of the roll of a die

observation of N charged particles in the particle collision

observation of nuclear decay after given time

observation of given process, eg. decay K+ → µ+ + νµ

Sample space is the set of all possible outcomes of the experiment

Decay time measurement
Time interval measured is a real number: Ω = R+
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Basic terms

Elementary event
Outcome of a single experiment (measurement):

result of the roll of a die

observation of N charged particles in the particle collision

observation of nuclear decay after given time

observation of given process, eg. decay K+ → µ+ + νµ

Sample space is the set of all possible outcomes of the experiment

Observation of K+ decay:
Sample space should include all possible (observable) decay channels:

Ω = {K+ → π+π◦,K+ → π+π◦π◦,K+ → π+π+π−, K+ → e+νe ,K
+ → µ+νµ,

K+ → π◦e+νe ,K
+ → π◦µ+νµ,K

+ → π◦π◦e+νe ,K
+ → π+π−e+νe , K+ → π+µ+e−}
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Basic terms

Sample space
Sample space Ω is the set of all possible outcomes of the experiment

Event
An event A is a given subset of Ω, A ⊂ Ω,

it can represent a number of possible outcomes for the experiment (!)

Examples of events
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Sample space
Sample space Ω is the set of all possible outcomes of the experiment

Event
An event A is a given subset of Ω, A ⊂ Ω,

it can represent a number of possible outcomes for the experiment (!)

Examples of events

Roll of a die

six: A1 = {6}
odd number: A2 = {1, 3, 5}
even number: A3 = {2, 4, 6}
any number: A4 = Ω = {1, 2, 3, 4, 5, 6}
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Basic terms

Sample space
Sample space Ω is the set of all possible outcomes of the experiment

Event
An event A is a given subset of Ω, A ⊂ Ω,

it can represent a number of possible outcomes for the experiment (!)

Examples of events

Charged particle multiplicity

pair production: A1 = {2}
odd number: A2 = {1, 3, 5, . . .}
even number: A3 = {2, 4, 6, . . .}
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Basic terms

Sample space
Sample space Ω is the set of all possible outcomes of the experiment

Event
An event A is a given subset of Ω, A ⊂ Ω,

it can represent a number of possible outcomes for the experiment (!)

Examples of events
Observation of K+ decay:

Hadronic decays
A1 = {K+ → π+π◦,K+ → π+π◦π◦,K+ → π+π+π−}

Leptonic decays
A2 = {K+ → e+νe ,K

+ → µ+νµ}
LFV decay (forbidden in SM)

A3 = {K+ → π+µ+e−}
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Basic terms

Events

From the formal point of view it is useful to introduce two events
which exist for each experiment:

impossible (empty) event: A = ∅
sure event: A = Ω

We also define:

union of events C = A ∪ B: all outcomes belonging to A or B

intersection of events D = A ∩ B: all outcomes belonging to A and B

complementary event E = Ā: all outcomes not belonging to A

mutually exclusive events: two events with no common outcome
⇒ their intersection is an empty event: A ∩ B = ∅
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A.F.Żarnecki Statistical analysis 01 October 3, 2024 18 / 43



Statistical analysis of experimental data

Concept of probability

1 Introduction

2 Basic terms

3 Definition of Probability

4 Properties of Probability

5 Bayes’ Theorem

6 Homework
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Definition of Probability

How to define probability?

We do have an intuitive understanding of the probability concept...

Probability P(A) of an event A should describes the odds
of an outcome of single measurement (experiment) to belong to A

Probability is a number between 0 and 1

probability of an empty event: P(∅) = 0
probability of a sure event: P(Ω) = 1

Classical definition as developed in the 18th–19th centuries

If the sample space contains NΩ elementary events (possible outcomes of the experiment) and
the considered event A contains NA elementary events, then, assuming all elementary
events are equally probable

P(A) =
NA

NΩ
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Definition of Probability

Classical definition - example see also in Wikipedia

In a straight poker game, consider player dealing five cards from a deck of 52.
Sampling space contains all possible “hands”, all possible sets of 5 cards selected out of 52
(order is not relevant):

NΩ =

(
52

5

)
= 2598 960

What is the probability of a “straight flush” (five cards in a sequence, of the same suit)?
We have four suits and the sequence can start from 9 numbers (from 1 to 9):

Nflush = 4× 9 = 36 ⇒ pflush =
36

2 598 960
≈ 1.35 · 10−5

What is the probability to get four cards of the same rank?

Nfour = 13× 48 = 624 ⇒ pfour =
624

2 598 960
≈ 2.4 · 10−4

where we had to take into account the number of options (48) for the fifth card !

A.F.Żarnecki Statistical analysis 01 October 3, 2024 21 / 43

https://en.wikipedia.org/wiki/Poker_probability


Definition of Probability

Classical definition - example see also in Wikipedia

In a straight poker game, consider player dealing five cards from a deck of 52.
Sampling space contains all possible “hands”, all possible sets of 5 cards selected out of 52
(order is not relevant):

NΩ =

(
52

5

)
= 2598 960

What is the probability of a “straight flush” (five cards in a sequence, of the same suit)?

We have four suits and the sequence can start from 9 numbers (from 1 to 9):

Nflush = 4× 9 = 36 ⇒ pflush =
36

2 598 960
≈ 1.35 · 10−5

What is the probability to get four cards of the same rank?

Nfour = 13× 48 = 624 ⇒ pfour =
624

2 598 960
≈ 2.4 · 10−4

where we had to take into account the number of options (48) for the fifth card !
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Definition of Probability

Classical definition

The classical definition of the probability works fine in many simple problems,
the gambling games in particular.

However, the sampling space and elementary events have to be uniquely defined!

This is usually not a problem for experimental results given by discrete numbers
(eg. roll of a die, card games, etc.).

But problems arise when this approach is to be applied to experiments with continuous spectra
of possible measurement results...

This is well illustrated by the “Bertrand paradox”
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Definition of Probability

Bertrand paradox description adapted from R. J. Barlow
pictures from Wikipedia

Definition of the problem:
In a circle of radius R an equilateral triangle is drawn.

What is the probability that the length of a random chord is greater than the triangle side?
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Definition of Probability

Bertrand paradox description adapted from R. J. Barlow
pictures from Wikipedia

Definition of the problem:
In a circle of radius R an equilateral triangle is drawn.

What is the probability that the length of a random chord is greater than the triangle side?

The problem seems to be simple, but we realize that the main
question is: how the random chord should be defined?
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Definition of Probability

Bertrand paradox description adapted from R. J. Barlow
pictures from Wikipedia

Definition of the problem:
In a circle of radius R an equilateral triangle is drawn.

What is the probability that the length of a random chord is greater than the triangle side?

Solution 1:
A random chord can be defined as a line connecting two random
points on the circle.

Without loss of generality, we can move one of its ends to the
vertex of the triangle.

The chord will be longer than the side of the triangle, if its other
end is between the two other vertices ⇒ probability is 1/3
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Definition of Probability

Bertrand paradox description adapted from R. J. Barlow
pictures from Wikipedia

Definition of the problem:
In a circle of radius R an equilateral triangle is drawn.

What is the probability that the length of a random chord is greater than the triangle side?

Solution 2:
Without loss of generality, we can rotate a random chord in such a
way that its centre is on the indicated radius of the circle.

The chord will be longer than the side of the triangle, if its centre is
inside the triangle.

The side of the triangle cuts the radius in the middle
⇒ probability is 1/2
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Definition of Probability

Bertrand paradox description adapted from R. J. Barlow
pictures from Wikipedia

Definition of the problem:
In a circle of radius R an equilateral triangle is drawn.

What is the probability that the length of a random chord is greater than the triangle side?

Solution 3:
We can draw a chord by choosing a random point in the circle as its
centre (unique definition of the chord).

The chord will be longer than the side of the triangle, if its centre is
inside the circle of radius R/2.

The surface of the circle is proportional to radius squared
⇒ probability is 1/4.
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Definition of Probability

Bertrand paradox

Base on the classical probability definition, we can get three contradictory answers! Why?

In the considered continuous sample space
“equally probable” elementary events are not uniquely defined!

We need to define how the actual experiment is performed...

Frequentist definition of probability

When repeating the same experiment a large number of times, N ≫ 1,
the probability of A

P(A) = lim
N→∞

N(A)

N

where N(A) is the number of occurrences of the event A
While this is not visible in the formula, the probability still depends on the considered sample
space Ω, which reflects the way the experiment is done.
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Definition of Probability

The frequentist (sometimes also called “classical”) definition of probability gives direct recipe
for the analysis of experimental data...

However, it is not always possible to perform the experiment a very large (infinite) number of
times... We need some additional guidance to know how to define the probability.

Kolmogorov Axioms

Kolmogorov (1933) formulated the three conditions
which have to be fulfilled by probability P(A) of an event A ⊂ Ω:

1 probability is a non-negative number: P(A) ≥ 0

2 probability of all possible outcomes (sample space): P(Ω) = 1

3 if A and B are mutually exclusive events: P(A ∪ B) = P(A) + P(B)

We can derive all properties of the probability from these three axioms...
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Properties of Probability

Fundamental properties
Following properties can be derived from the Kolmogorov axioms:

probability of the empty event is zero:

P(∅) = 0

∅ and Ω are mutually exclusive and Ω = Ω ∪ ∅
⇒ P(Ω) = P(Ω) + P(∅) ⇒ P(∅) = 0

probability of complementary event:

P(Ā) = 1− P(A)

probability of the union of two events:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)
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probability of complementary event:

P(Ā) = 1− P(A)

A and Ā are mutually exclusive and by definition A ∪ Ā = Ω
⇒ P(A) + P(Ā) = P(Ω) = 1 ⇒ P(Ā) = 1− P(A)
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Properties of Probability

Fundamental properties
Following properties can be derived from the Kolmogorov axioms:

probability of the empty event is zero:

P(∅) = 0

probability of complementary event:

P(Ā) = 1− P(A)

probability of the union of two events:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

Union of A and B can be decomposed as:

P(A ∪ B) = P(A ∩ B̄) + P(B ∩ Ā) + P(A ∩ B)
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Properties of Probability

Fundamental properties
Following properties can be derived from the Kolmogorov axioms:

probability of the empty event is zero:

P(∅) = 0

probability of complementary event:

P(Ā) = 1− P(A)

probability of the union of two events:

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

and then one can note that

P(A ∩ B̄) = P(A)− P(A ∩ B) and P(B ∩ Ā) = P(B)− P(B ∩ A)
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Properties of Probability

Statistical Independence

Two events A and B are said to be statistically independent if and only if

P(A ∩ B) = P(A) · P(B)

Two important properties follow:

mutually exclusive (nonempty) events cannot be independent

if A is subset of B, A ⊂ B, they cannot be independent, unless B = Ω

Conditional Probability
When two events are not independent, we can consider probability of event A given that
another event B is observed:

P(A|B) =
P(A ∩ B)

P(B)
or 0 if P(B) = 0

For independent events: P(A|B) = P(A)
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Properties of Probability

Example (1)
Rolling a single die: N = 6 possible outcomes (elementary events).
We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1/6

Consider following events:

odd number: A1 = {1, 3, 5}
even number: A2 = {2, 4, 6}
1 or 6: A3 = {1, 6}
at least 4: A4 = {4, 5, 6}

⇒ p1 = 1/2

⇒ p2 = 1/2

⇒ p3 = 1/3

⇒ p4 = 1/2
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Example (1)
Rolling a single die: N = 6 possible outcomes (elementary events).
We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1/6

Consider following events:

odd number: A1 = {1, 3, 5}
even number: A2 = {2, 4, 6}
1 or 6: A3 = {1, 6}
at least 4: A4 = {4, 5, 6}

⇒ p1 = 1/2

⇒ p2 = 1/2

⇒ p3 = 1/3

⇒ p4 = 1/2

A1 and A2 are not independent, they are mutually exclusive:

P(A1 ∩ A2) = P(∅) = 0
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Properties of Probability

Example (1)
Rolling a single die: N = 6 possible outcomes (elementary events).
We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1/6

Consider following events:

odd number: A1 = {1, 3, 5}
even number: A2 = {2, 4, 6}
1 or 6: A3 = {1, 6}
at least 4: A4 = {4, 5, 6}

⇒ p1 = 1/2

⇒ p2 = 1/2

⇒ p3 = 1/3

⇒ p4 = 1/2

A1 and A3 are independent:
A1 ∩ A3 = {1}

P(A1 ∩ A3) = pe = 1/6 = P(A1) · P(A3)
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Properties of Probability

Example (1)
Rolling a single die: N = 6 possible outcomes (elementary events).
We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1/6

Consider following events:

odd number: A1 = {1, 3, 5}
even number: A2 = {2, 4, 6}
1 or 6: A3 = {1, 6}
at least 4: A4 = {4, 5, 6}

⇒ p1 = 1/2

⇒ p2 = 1/2

⇒ p3 = 1/3

⇒ p4 = 1/2

A1 and A4 are NOT independent:
A1 ∩ A4 = {5}

P(A1 ∩ A4) = pe = 1/6 ̸= P(A1) · P(A4) = 1/4

A.F.Żarnecki Statistical analysis 01 October 3, 2024 29 / 43



Properties of Probability

Example (1)
Rolling a single die: N = 6 possible outcomes (elementary events).
We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1/6

Consider following events:

odd number: A1 = {1, 3, 5}
even number: A2 = {2, 4, 6}
1 or 6: A3 = {1, 6}
at least 4: A4 = {4, 5, 6}

⇒ p1 = 1/2

⇒ p2 = 1/2

⇒ p3 = 1/3

⇒ p4 = 1/2

Probability of A4 when A1 is observed:
P(A1 ∩ A4) = 1/6

P(A4|A1) =
P(A1 ∩ A4)

P(A1)
=

1/6

1/2
= 1/3 ̸= P(A4)
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Properties of Probability

Example (2)
Rolling two dice (eg. red and blue): N = 6 · 6 = 36 possible outcomes.
Sample space can be best presented as a table:

1 2 3 4 5 6

1

2

3

4

5

6

We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1
36
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Properties of Probability

Example (2)
Rolling two dice (eg. red and blue): N = 6 · 6 = 36 possible outcomes.
Sample space can be best presented as a table:

1 2 3 4 5 6

1 A B

2 A B

3 A B

4 A∩B

5 B A

6 B A

We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1
36

Events: A - red die shows 3 and B - sum of two dice is 7

P(A ∩ B) = 1/36 = P(A) · P(B) ⇒ are independent
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Properties of Probability

Example (2)
Rolling two dice (eg. red and blue): N = 6 · 6 = 36 possible outcomes.
Sample space can be best presented as a table:

1 2 3 4 5 6

1 A C

2 A∩C

3 C A

4 C A

5 A

6 A

We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1
36

Events: A - red die shows 3 and C - sum of two dice is 5

P(A ∩ C ) = 1/36 ̸= P(A) · P(C ) = 1/6 · 1/9 ⇒ NOT independent
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Properties of Probability

Example (2)
Rolling two dice (eg. red and blue): N = 6 · 6 = 36 possible outcomes.
Sample space can be best presented as a table:

1 2 3 4 5 6

1 A C

2 A∩C

3 C A

4 C A

5 A

6 A

We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1
36

Events: A - red die shows 3 and C - sum of two dice is 5

P(A|C ) = P(A ∩ C )/P(C ) = 1
36 / 1

9 = 1/4
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Properties of Probability

Example (2)
Rolling two dice (eg. red and blue): N = 6 · 6 = 36 possible outcomes.
Sample space can be best presented as a table:

1 2 3 4 5 6

1 A C

2 A∩C

3 C A

4 C A

5 A

6 A

We assume each outcome has the same probability ⇒ pe = P(Ω)/N = 1
36

Events: A - red die shows 3 and C - sum of two dice is 5

P(C |A) = P(A ∩ C )/P(A) = 1
36 / 1

6 = 1/6
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Properties of Probability

Partition of the sample space

It is a set of events Ai (i = 1 . . . n) with the following properties:

all Ai are mutually exclusive

Ai ∩ Aj = ∅, ∀i ̸= j

they cover the whole sampling space

n⋃
i=1

Ai = Ω

From the two conditions we realize that:
n∑

i=1

P(Ai ) = 1

We can be sure that one (and only one) Ai will always take place
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Bayes’ Theorem

Total Probability Theorem
Given partition Ai of the sampling space, for any event B we can write

P(B) =
n∑

i=1

P(B ∩ Ai ) =
n∑

i=1

P(B|Ai ) · P(Ai )

Total probability of B can be calculated as a sum over probabilities calculated in separate
sub-spaces. Very useful in many cases...
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Given partition Ai of the sampling space, for any event B we can write

P(B) =
n∑

i=1

P(B ∩ Ai ) =
n∑

i=1

P(B|Ai ) · P(Ai )

Total probability of B can be calculated as a sum over probabilities calculated in separate
sub-spaces. Very useful in many cases...

Example (1)
What is the probability of giving birth to twins in Europe?
We can addressing this problem by combining probabilities for different countries in Europe:

P(Twins) =
n∑

i=1

P(Twins|Countryi ) ·
Ni∑n
i=1Ni

where Ni is the number off all births in country i
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Bayes’ Theorem

Total Probability Theorem
Given partition Ai of the sampling space, for any event B we can write

P(B) =
n∑

i=1

P(B ∩ Ai ) =
n∑

i=1

P(B|Ai ) · P(Ai )

Total probability of B can be calculated as a sum over probabilities calculated in separate
sub-spaces. Very useful in many cases...

Example (2)
What is the probability of producing π+ in e+e− annihilation into Z 0:

e+e− → Z 0 → π+ + ...

We can divide the sampling space, all Z 0 decays, into separate decay channels, Z 0 → f f̄ ,
where f = e, µ, τ, νe , νµ, ντ , u, d , s, c , b. For some of these channels the answer is known.

eg. P(π+|Z → νν̄) = 0
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Bayes’ Theorem

Bayes’ Theorem
For events A and B the two conditional probabilities are related:

P(A|B) = P(A ∩ B)

P(B)
and P(B|A) = P(B ∩ A)

P(A)

as B ∩ A = A ∩ B we obtain: Bayes’ Theorem

P(A|B) =
P(B|A) P(A)

P(B)

This can be also written in a more general form:

P(Ai |B) =
P(B|Ai ) P(Ai )∑n
j=1 P(B|Aj) P(Aj)

where Ai is the partition of the sampling space.
There is nothing new in this as long as Ai and B belong to the same sampling space...
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Bayes’ Theorem

Bayesian approach
Bayes theorem can be used to generalize the concept of probability.
In particular, one can consider “probability” of given hypothesis H
(theoretical model or model parameter, eg. Hubble constant)
when taking into known outcome D (data) of the experiment:

P(H|D) =
P(D|H)

P(D)
· P(H)

There are two problems with this approach:

H can not be considered an event, sampling space can not be defined
(no experiment to repeat)

we need to make a subjective assumption about the “prior” P(H) describing our initial
belief in hypothesis H

For these reasons I rather use term “degree of belief” for the result of the Bayesian procedure
applied “outside” the sampling space (not to random events)
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Bayes’ Theorem

Example of Bayesian approach
adapted from G. Cowan, 2011 CERN Summer Student Lectures on Statistics

How much should I worry, if I get a positive test result for virus X?

Hypothesis: H - I am infected (I am a carrier of X)

Data: D - test result is positive

How likely is it that I am a carrier of X, what is P(H|D)?

We need to know efficiency and false rate for the test. Let as assume

P(D|H) = 0.99 test efficiency

P(D|H̄) = 0.01 false positive rate

We can also assume that 1 person per 1000 is an X carrier in our country

P(H) = 0.001
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Bayes’ Theorem

Example of Bayesian approach
We first use the total probability theorem to calculate the probability of the positive result:

P(D) = P(D|H) · P(H) + P(D|H̄) · P(H̄)

= 0.99 · 0.001 + 0.01 · 0.999 = 0.01098 ≈ 0.011

and then apply Bayes’ theorem:

P(H|D) =
P(D|H)

P(D)
· P(H)

=
0.99

0.011
· 0.001 ≈ 0.09

You can believe that your chances of being infected with X are 9%...
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Bayes’ Theorem

Example of Bayesian approach
We first use the total probability theorem to calculate the probability of the positive result:

P(D) = P(D|H) · P(H) + P(D|H̄) · P(H̄)

= 0.99 · 0.001 + 0.01 · 0.999 = 0.01098 ≈ 0.011

and then apply Bayes’ theorem:

P(H|D) =
P(D|H)

P(D)
· P(H)

=
0.99

0.011
· 0.001 ≈ 0.09

You can believe that your chances of being infected with X are 9%...
How useful is this information in your opinion?
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Bayes’ Theorem

Example of Bayesian approach
We first use the total probability theorem to calculate the probability of the positive result:

P(D) = P(D|H) · P(H) + P(D|H̄) · P(H̄)

= 0.99 · 0.001 + 0.01 · 0.999 = 0.01098 ≈ 0.011

and then apply Bayes’ theorem:

P(H|D) =
P(D|H)

P(D)
· P(H)

=
0.99

0.011
· 0.001 ≈ 0.09

You can believe that your chances of being infected with X are 9%...
This number represents the probability of person with positive test result being infected.
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Bayes’ Theorem

Example of Bayesian approach
We first use the total probability theorem to calculate the probability of the positive result:

P(D) = P(D|H) · P(H) + P(D|H̄) · P(H̄)

= 0.99 · 0.001 + 0.01 · 0.999 = 0.01098 ≈ 0.011

and then apply Bayes’ theorem:

P(H|D) =
P(D|H)

P(D)
· P(H)

=
0.99

0.011
· 0.001 ≈ 0.09

You can believe that your chances of being infected with X are 9%...
But this can hardly be interpreted as the probability or your infection (not a random variable)...
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Bayes’ Theorem

Prior problem
Let us look again at the statistical data on the population of Poland:

We can present it as the age probability (for randomly chosen person).
Can we draw any conclusions concerning the life expectation?
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Bayes’ Theorem

Prior problem

To simplify the problem, let us assume that the “survival probability” does not change in time:

p(y |b) = s(a)

where: b is the year of birth, y is the year of the population census, a = y − b is age.

Unfortunately, what we measure is the age distribution:

p(a) = p(b|y) for b = y − a

We can apply Bayes’ Theorem to relate it to the “survival probability”

p(a) =
s(a) · u(y − a)∑
b s(y − b) · u(b)

where u(b) is the birth number distribution. We need to know it!!!
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Bayes’ Theorem

Prior problem
What is needed is the number of births in each year: shown is my guess

Without exact knowledge of this “prior” we can not draw any conclusions...
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Bayes’ Theorem

There are also other reasons, why extraction of survival curve from single population census is
not possible. In particular, it depends significantly on the year of birth...

Source: ourworldindata.org
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Statistical analysis of experimental data

Concept of probability
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Homework

Bertrand paradox
In a circle of radius R an equilateral triangle is drawn. What is the probability that the length
of a random chord is greater than the side of the triangle?

What is, in your opinion, the correct answer to the problem?
Give arguments for the proper construction of random chord.
You can also propose your own definition/construction!

Solutions should be uploaded
until October 16 (Wednesday)
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