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Definition of Probability

Classical definition as developed in the 18th–19th centuries

If the sample space contains NΩ elementary events (possible outcomes of the experiment) and
the considered event A contains NA elementary events, then, assuming all elementary
events are equally probable

P(A) =
NA

NΩ

Only applicable to “uniform” sample spaces (eg. gambling games).

Frequentist definition

When repeating the same experiment a large number of times, N ≫ 1, the probability of A

P(A) = lim
N→∞

N(A)

N

where N(A) is the number of occurrences of the event A
Probability does depends on the definition of the considered sample space!
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A.F.Żarnecki Statictical analysis 03 October 17, 2024 4 / 48



Random variables

Experiments

So far, we have considered probability as a very general concept.
We only assumed that an experiment delivers data which are a subject to fluctuations.
But we did not look at the details of the obtained data.

The outcome of the experiment can be of different nature:

observation (or non-observation) of given process (true/false)

observation of an event from given category (classification)

number of the occurrences of given event (counting)

value of given observable (measurement)

We usually present the outcome of the experiment (measurement) in a numerical form.
Two general types of variables can be considered:

discrete (logical, classification and counting)

continuous (measurement)
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Random variables

Experiments

When repeating the experiment many times, numerical results fluctuate, reflecting fluctuations
of the measurement (see lecture 01).

The numerical result of a repeated experiment (measurement) can not be predicted,
it is only known when the experiment is made

⇒ that is why we call it a random variable

The true value of the considered physical parameter is usually unknown
or known with limited precision only.

By repeating the measurement many times we typically want to increases our knowledge of
this parameter, estimate its value with the highest possible precision.

We can also repeat the measurement to better understand the measurement process itself and
find the proper description of the observed fluctuations.

A.F.Żarnecki Statictical analysis 03 October 17, 2024 6 / 48



Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 1st try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 3rd try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 4th try
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100 rolls, 5th try

Significant fluctuations observed between results
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 1000 rolls
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 10000 rolls
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100000 rolls

Relative fluctuations decrease with experiment count as expected in frequentist appoach
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

For a discrete variable: plot the count number for each elementary event.
Example of dice roll experiment: 100000 rolls (zoom)
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Random variables

Distributions
It is very practical to present results of a repeated experiment in
a form of a distribution of the considered random variable.

We can plot also plot the result as the relative fraction.
Example of dice roll experiment: 1000000 rolls
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Random variables

Probability distribution function
In the limit of the infinite number of experiments, the relative fraction
is given by a probability distribution function (PDF) (frequentist definition)

For discrete variables, probability distribution function is the probability that a given value of
the random variable occurs in a single experiment.

Probability distribution function: f (n) = P(n) = 1
6 = const
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Random variables

Histograms
Graphical presentation becomes more difficult for continuous variable.
With high readout precision, probability of obtaining the same numerical result twice is negligible.

The method of plotting the count number for each result does not work!
Example of decay time measurement: τ = 2.2µs, 100 decays
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Random variables

Histograms
Instead of asking for given values, we need to look at defined value ranges.
We usually define a set of value bins covering the whole considered value range
and count events when variable value is in given bin.
Then we can plot the count number for each bin
Example of decay time measurement: τ = 2.2µs, 100 decays
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Random variables

Probability distribution function
We can calculate the relative fraction of events in each bin.

In the limit of the infinite number of experiments (and very narrow bins), the relative fraction
is given by a probability distribution function (PDF) of the variable multiplied by the bin width.

Example of decay time measurement: τ = 2.2µs, 10000 decays
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Probability distributions

Probability distribution function (PDF)
also called “Probability density function” in some books

For given random variable X , probability distribution function, f (x), describes the probability
to obtain given numerical result x (in single experiment). For infinitesimal interval dx :

P(x < X < x + dx) = f (x) dx

For arbitrary interval [x1,x2]:

P(x1 < X < x2) =

∫ x2

x1

dx f (x)

This can be considered an alternative definition of f (x)
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Probability distributions

Cumulative distribution function

We can also define cumulative distribution function F (x), which is the probability that an
experiment will result in a value not grater than x :

F (x) = P(X < x)

Probability distribution function can be then written as the derivative:

f (x) =
dF (x)

dx

Probability that the X value observed is in the range from x1 to x2:

P(x1 < X < x2) = F (x2)− F (x1) =

∫ x2

x1

dx f (x)
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Probability distributions

General properties of distribution functions

From the properties of probability

f (x) ≥ 0

∫ +∞

−∞
dx f (x) = 1

For cumulative distribution:

F (x) =

∫ x

−∞
dx ′ f (x ′)

⇒ lim
x→−∞

F (x) = 0 lim
x→+∞

F (x) = 1
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Probability distributions

Moments of distribution functions

Expectation value of an arbitrary function g(x) of the random variable X can be defined as

E(g(x)) = ⟨ g(x) ⟩ =

∫ +∞

−∞
dx g(x) f (x)

=
∑
i

g(xi ) f (xi )

where f(x) is the probability distribution function for X.

The expectation value of a random variable itself or the mean:

µ = E(X ) = ⟨ x ⟩ = x̄ =

∫ +∞

−∞
dx x f (x)

=
∑
i

xi f (xi )

For discrete random variables mean is given by the sum of all possible values xi of X
multiplied by their corresponding probabilities.
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Probability distributions

Moment of order n (nth moment) is defined as

µn = E(X n) = ⟨ xn ⟩ =

∫ +∞

−∞
dx xn f (x) =

∑
i

xni f (xi )

Mean value is, by definition, the first (n = 1) moment of the probability distribution, µ ≡ µ1.

Central moment of order n is defined as

mn = E ((X − µ)n) = ⟨ (x − µ)n ⟩ =

∫ +∞

−∞
dx (x − µ)n f (x)

=
∑
i

(xi − µ)n f (xi )

By calculating moments of the (unknown or known with limited precision) probability
distribution we can extract information about its shape.
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Probability distributions

Moments of distribution functions
For the lowest order moments we have:

µ0 ≡ 1 m0 ≡ 1 normalization of f (x)

µ1 ≡ µ m1 ≡ 0 definition of mean value of f (x)

The first moment which gives us information about the shape of f (x) is
Variance, which is the second central moment:

σ2 =

V(X ) = m2 = ⟨ (x − µ)2 ⟩ =

∫ +∞

−∞
dx (x − µ)2 f (x)

=
∑
i

(xi − µ)2 f (xi )

The square root of the variance is referred to as the standard deviation σ.
Describes the average difference between measurements xi and their mean µ.
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Basic probability distributions

Resources

Possible places to look for numerical tools:

basic distributions are just available in NumPy:
https://numpy.org/doc/stable/reference/random/generator.html#distributions

for more complete list of possible probability distributions you can look at SciPy:
https://docs.scipy.org/doc/scipy/reference/stats.html#probability-distributions
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Binomial distribution

Consider an experiments with only two possible outcomes
(binary experiment): Ω = {’success’, ’failure’} (or Ω = {’true’, ’false’} )

This is also the case, when we look for particular event A in wider sampling space.

Assume that the success probability p is known.
What is the probability of having n successes in N tries?
We are not interested in the order in which the successes take place.

Example
What is the probability to get three ’six’ when rolling the dice five times?

p =
1

6
n = 3 N = 5

It is important to notice that we ask for a probability for an event from a different, extended
sampling space, Ω′ = ΩN !
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Binomial distribution

Binomial distribution
Describes probability of having n successes in N tries, assuming success probability p in single
trial and failure probability q = 1− p

P(n) =

(
N

n

)
pn qN−n =

N!

n!(N − n)!
pn qN−n

The Newton symbol
(
N
n

)
gives the number of possible sequences of N tries giving n successes

(regardless of order) and pn qN−n describes the probability for single such sequence (elementary event).

Mean (expected value) of the binomial distribution

⟨n⟩ = n̄ = p N

Variance of the distribution important for efficiency uncertainty

σ2 = p (1− p) N

For given N, distribution is widest for p = 0.5
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Binomial distribution

Example (1) 03 binomial.ipynb

What is the probability to get three ’six’ when rolling the dice five times?

p =
1

6
n = 3 N = 5

By putting the numbers directly in the formula we get

P(n) =
N!

n!(N − n)!
pn qN−n =

5!

3! 2!

1

63
52

62
=

120 · 1 · 25
6 · 2 · 216 · 36

≈ 0.032
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Binomial distribution

Example (2)
Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?

Simple answer: n̄ = pN = 0.9 · 22 = 19.8 < 20 ⇒ should be OK...

Probability that students will NOT fit in the room:

Povfl = P(22) + P(21) = 0.922 + 22 · 0.921 · 0.1 ≈ 0.098 + 0.241 = 0.339

There is 66% chance that the room will be large enough for all students.

But this probability applies to single lecture only!
Probability that they will fit in the room for 14 lectures is

POK = (1− Povfl)14 ≈ 0.003

⇒ we can hardly count on luck in this case, we need larger room !
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A.F.Żarnecki Statictical analysis 03 October 17, 2024 25 / 48



Binomial distribution

Example (2)
Lecture room has 20 seats and 22 students enrolled for the course.
But students attend 90% of lectures only. Is the room large enough?

Simple answer: n̄ = pN = 0.9 · 22 = 19.8 < 20 ⇒ should be OK...

Probability that students will NOT fit in the room:

Povfl = P(22) + P(21) = 0.922 + 22 · 0.921 · 0.1 ≈ 0.098 + 0.241 = 0.339

There is 66% chance that the room will be large enough for all students.

But this probability applies to single lecture only!
Probability that they will fit in the room for 14 lectures is

POK = (1− Povfl)14 ≈ 0.003

⇒ we can hardly count on luck in this case, we need larger room !
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Binomial distribution

Example (3)
Consider results of the quality test at the factory.
Out of N tested products of a given kind, N1 passed the quality check and N0 failed.

Efficiency of the production process (probability of positive test) can be estimated as

ε =
N1

N

How to estimate the uncertainty of this results?
It is clear that, if we test another N ′ products, the resulting ε′ can be different...

The variance of the N1 distribution is given by σ2
N1

= p (1− p) N (for fixed N).
So the expected variance of ε (which is our estimate of p) can be calculated as:

σ2
ε =

ε · (1− ε)

N

This formula remains valid also for variable N...
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Binomial distribution

Example (3)

Mistake quite often made by student is to calculate the uncertainty of ε = N1
N

assuming N1 and N are two independent variables with Poisson uncertainty estimated as:

σ2
N1

= N1 σ2
N = N

which results in the final uncertainty estimate: we will discuss error propagation later

σ2
ε =

ε · (1 + ε)

N
WRONG

One can immediately see that there is a problem considering the case of N1 ∼ N.
For N = 1000 and N1 = 999 we get ε = 0.999 and σε ≈ 0.045, which suggests much higher
level of fluctuations than seems possible...

This result is wrong because N and N1 are not independent! N1 is always a subset of N
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Binomial distribution

Example (3)

Correct approach to the problem (when we do not want to use properties of the binomial
distribution) is to rewrite the efficiency formula as

ε =
N1

N1 + N2

and assume that N1 and N2 are two independent variables with Poisson uncertainty.
The final uncertainty estimate resulting from error propagation is then given by:

σ2
ε =

N1 · N2

(N1 + N2)3
=

ε · (1− ε)

N
same as from binomial distribution

which has very different behaviour for N1 → N. For N = 1000 and N1 = 999 we get
ε = 0.999 and σε ≈ 0.001, which is what we would expect (from expected fluctuations in N2)
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Uniform distribution

Uniform probability distribution
Is often used as a model for a “complete randomness” of measurement result in given range. If
variable x is restricted to interval [a, b]:

f (x) =


0 for x < a

1
b−a for a ≤ x ≤ b

0 for x > b

Mean (expected value) of the uniform distribution

x̄ = ⟨ x ⟩ =
a+ b

2
Variance of the uniform distribution

V(x) = σ2 =
(b − a)2

12
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Exponential distribution

Exponential probability distribution

Describes the probability of waiting time t, when we wait for event A and the probability of A
in a small time interval dt is constant: dp = dt/τ .
This is the case for particle and nuclear decays, but also for other phenomena τ is the only parameter

This problem is easily solved when we consider cumulative distribution:

F (t + dt) = F (t) + (1− F (t)) · dt
τ

d

dt
F (t) =

1

τ
· (1− F (t))

d

dt
(1− F (t)) = −1

τ
· (1− F (t))

(1− F (t)) = C · e−t/τ

F (t) = 1− e−t/τ C = 1 from boundary conditions
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Exponential distribution

Exponential probability distribution
Resulting formula for the probability distribution is:

f (t) =

{ 1
τ · e−t/τ for t ≥ 0

0 for t < 0
indicated by the red dashed line:

Mean (expected value) of the exponential distribution

⟨ t ⟩ =

∫ +∞

0
dt t f (t) = τ integrating by parts

For nuclear/particle decays, parameter τ is the mean lifetime...

Variance of the exponential distribution

V(t) = σ2 =

∫ +∞

0
dt (t − τ)2 f (t) = τ2
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Exponential distribution

Example

What is the probability that the particle does not decay within 10 lifetimes?

We can just look at the cumulative distribution:

F (t) = 1− e−t/τ

1− F (t) = e−t/τ

1− F (10τ) = e−10 ≈ 0.0000454

Probability is very small, but not negligible...
Half-life
Frequently used in nuclear physics, nuclear medicine etc.
Defined as a time needed for half of the nuclei to decay.

F (t1/2) = 0.5

⇒ t1/2 = ln 2 · τ
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Poisson distribution

Expected number of decays 03 counting.ipynb

Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment counting decays in 10 s time window?

Example of decay count measurement: 100 measurements (100× 10 s)

A.F.Żarnecki Statictical analysis 03 October 17, 2024 33 / 48

Well described by Poisson distribution

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/03_Distributions/03_counting.ipynb
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Poisson distribution

Poisson probability distribution
Formula for the Poisson probability distribution: red circles in the plot

P(n) =
µn e−µ

n!
for n = 0, 1, 2, . . .

where µ, the expected number of events (mean), is the only parameter (!)

Mean (expected) number of events

n̄ = ⟨ n ⟩ ≡ µ

Variance of the Poisson distribution

V(n) = ⟨ (n − µ)2 ⟩ =
∑
n

(n − µ)2 P(n) = µ

Often defines statistical uncertainty of the measurement...
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Gamma distribution

Expected time of decay sequence 03 gamma.ipynb

Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for N decays?

Example of sequence measurements: 1 decay, 1000 measurements
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Expected exponential distribution

Described by Gamma distribution

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/03_Distributions/03_gamma.ipynb
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Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for N decays?

Example of sequence measurements: 3 decays, 1000 measurements
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Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for N decays?

Example of sequence measurements: 5 decays, 1000 measurements

A.F.Żarnecki Statictical analysis 03 October 17, 2024 35 / 48

Expected exponential distributionDescribed by Gamma distribution

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/03_Distributions/03_gamma.ipynb


Gamma distribution
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Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for N decays?

Example of sequence measurements: 7 decays, 1000 measurements
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Expected exponential distributionDescribed by Gamma distribution
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Gamma distribution

Expected time of decay sequence 03 gamma.ipynb

Consider radioactive source with 1 decay per second (1 Bq).

What is the expected result of the experiment measuring time needed for N decays?

Example of sequence measurements: 10 decays, 1000 measurements
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Expected exponential distributionDescribed by Gamma distribution
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Gamma distribution

Gamma distribution
Decay sequence time distribution is described by Gamma distribution:

f (x) =


xk−1 λk e−λx

Γ(k) for x ≥ 0

0 for x < 0

where k ≥ 0 and λ ≥ 0 are real parameters of the Gamma distribution.
For decay sequence of n decays: k = n and λ = 1/τ

Mean (expected value) of the Gamma distribution

x̄ = ⟨ x ⟩ =
k

λ
Variance of the Gamma distribution

V(x) = σ2 =
k

λ2
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For decay sequence of n decays: k = n and λ = 1/τ

Mean (expected value) of the Gamma distribution

x̄ = ⟨ x ⟩ =
k

λ
Variance of the Gamma distribution

V(x) = σ2 =
k

λ2
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 =
k − 1

λ

= x̄

(
1− σ2

x̄2

)

5 decays, 100000 measurements
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 =
k − 1

λ

= x̄

(
1− σ2

x̄2

)

10 decays, 100000 measurements
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Gamma distribution

Gamma distribution
For k > 1 (n > 1) distribution has a maximum at

x0 =
k − 1

λ

= x̄

(
1− σ2

x̄2

)

Gamma distribution can also be written in equivalent form:

f (x) = A · exp

[
−
(
x0
σ0

)2(x − x0
x0

− ln
x

x0

)]

where A is normalization factor and σ0 describes the width of the distribution around x0:

σ2
0 =

k − 1

λ2

= σ2

(
1− σ2

x̄2

)
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Gamma distribution

Gamma distribution
Gamma distribution is a “natural” choice for describing many physical processes.
Its properties are very similar to those of the Gaussian distribution with one additional
advantage: negative results are excluded by definition. One can think of the Gamma
distribution as an analogue of the Gaussian one restricted to the non-negative results (R+)

Sampling calorimeter response distribution
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Gamma distribution

Gamma distribution
Gamma distribution is a “natural” choice for describing many physical processes.
Its properties are very similar to those of the Gaussian distribution with one additional
advantage: negative results are excluded by definition. One can think of the Gamma
distribution as an analogue of the Gaussian one restricted to the non-negative results (R+)

Sampling calorimeter response distribution from GEANT4 simulation Graham Wilson @ LCWS’2024
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Gaussian distribution

Gaussian (Normal) distribution
Is most frequently used to describe fluctuations of the measurements and resulting
measurement uncertainties

f (x) =
1

σ
√
2π

exp

(
−1

2

(x − µ)2

σ2

)
where µ and σ are two real parameters of the distribution describing

Mean (expected value) of the Gaussian distribution

E(x) = ⟨ x ⟩ = µ

and Variance of the Gaussian distribution

V(x) = ⟨ (x − µ)2 ⟩ = σ2
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Gaussian distribution

Combined distributions
Consider two independent random variables X and Y :

f (x , y) = fx(x) · fy (y)

The sum of these variables, z = x + y , is also a random variable and

z̄ = E(Z ) = E(X ) + E(Y ) = x̄ + ȳ

σ2
z = V(Z ) = V(X ) + V(Y ) = σ2

x + σ2
y

If X and Y are described by Gaussian distribution function,
then Z is also described by Gaussian probability distribution !

This is widely used when eg. describing measurement uncertainties.

However, this is also the case for the Gamma distribution !!!
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Statistical analysis of experimental data

Probability distributions and their properties
1 Random variables

2 Probability distributions

3 Basic probability distributions
Binomial distribution
Uniform distribution
Exponential distribution
Poisson distribution
Gamma distribution
Gaussian distribution

4 Practical example

5 Homework
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Practical example

Model of radioactivity
Simple way to demonstrate properties of radioactive decay...

Assume you start with a set of N0 = 100 dice.

1 at each step you roll all dice you have (a step is our time unit)

2 you then remove all dice which show 1 (they “decay”) and go to next step
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Practical example

Model of radioactivity
Simple way to demonstrate properties of radioactive decay...

Assume you start with a set of N0 = 100 dice.
1 at each step you roll all dice you have (a step is our time unit)
2 you then remove all dice which show 1 (they “decay”) and go to next step

Example result:
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Practical example

Model of radioactivity

Can we answer the following questions:

What is the expected (average) time for all dice to “decay”?

What is the expected total decay time distribution?

Step 1: calculate the effective average lifetime for a single dice.

Survival probability for t = 1 (one roll):

1− F (t) = exp(− t

τ1
) =

5

6

⇒ τ1 = t/ ln(1.2) ≈ 5.4848

A.F.Żarnecki Statictical analysis 03 October 17, 2024 43 / 48



Practical example

Model of radioactivity

Can we answer the following questions:

What is the expected (average) time for all dice to “decay”?

What is the expected total decay time distribution?

Step 1: calculate the effective average lifetime for a single dice.

Survival probability for t = 1 (one roll):

1− F (t) = exp(− t

τ1
) =

5

6

⇒ τ1 = t/ ln(1.2) ≈ 5.4848
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Practical example

Model of radioactivity

Step 2: calculate the expected time for first decay in collection of N dice

Decay probability for single dice, for small time interval dt ≪ 1:

dp1 =
dt

τ1

For very small dt probability of having two decays within dt can be neglected.
Decay probability in collection of N dice is then given by:

dpN = N · dp1 =
N

τ1
dt

⇒ τN =
τ1
N
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Practical example

Model of radioactivity 03 radioactivity.ipynb

Step 3: knowing the expected waiting time for each decay,
we can calculate the expected time for all dice to decay:

ttot =
1∑

N=Ntot

τ1
N

= τ1 ·
Ntot∑
N=1

1

N
≈ 5.1874 τ1 ≈ 28.45

We can also calculate variance of the total decay time by summing variances:

σ2
ttot =

1∑
N=Ntot

(τ1
N

)2
= τ21 ·

Ntot∑
N=1

1

N2
≈ 1.6350 τ21 ≈ 49.19

⇒ σttot ≈ 7.01

A.F.Żarnecki Statictical analysis 03 October 17, 2024 45 / 48

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/03_Distributions/03_radioactivity.ipynb


Practical example

Model of radioactivity 03 radioactivity.ipynb

Step 3: knowing the expected waiting time for each decay,
we can calculate the expected time for all dice to decay:

ttot =
1∑

N=Ntot

τ1
N

= τ1 ·
Ntot∑
N=1

1

N
≈ 5.1874 τ1 ≈ 28.45

We can also calculate variance of the total decay time by summing variances:

σ2
ttot =

1∑
N=Ntot

(τ1
N

)2
= τ21 ·

Ntot∑
N=1

1

N2
≈ 1.6350 τ21 ≈ 49.19

⇒ σttot ≈ 7.01
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Practical example

Model of radioactivity 03 radioactivity.ipynb

Total decay time distribution from (large number of) simulated experiment

Simulation results: 28.95 ± 6.99 in very good agreement with expectation ( 28.45 ± 7.01 )
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Practical example

Model of radioactivity 03 radioactivity.ipynb

Total decay time distribution from (large number of) simulated experiment

Distribution similar to the gamma distribution. Differences due to the absence of fractional decay
times. A.F.Żarnecki Statictical analysis 03 October 17, 2024 46 / 48
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Statistical analysis of experimental data

Probability distributions and their properties
1 Random variables

2 Probability distributions

3 Basic probability distributions
Binomial distribution
Uniform distribution
Exponential distribution
Poisson distribution
Gamma distribution
Gaussian distribution

4 Practical example

5 Homework
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Homework

Evaluation of branching ratios

Consider an experiment measuring decays of the τ lepton.
Events are classified into three categories:

electron decays: τ− → e−ντ ν̄e

muon decays: τ− → µ−ντ ν̄µ

other decays (mostly hadronic)

After measuring 880 decays, 155 events were classified as electron and 145 as muon ones.

Calculate the resulting branching ratios (decay probabilities in given channel)
and their uncertainties (!).

Solutions should be uploaded until October 30.
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