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Probability distributions

Probability distribution function (PDF)
also called “Probability density function” in some books

For given random variable X , probability distribution function, f (x), describes the probability
to obtain given numerical result x (in single experiment). For infinitesimal interval dx :

P(x < X < x + dx) = f (x) dx

For arbitrary interval [x1,x2]:

P(x1 < X < x2) =

∫ x2

x1

dx f (x)

This can be considered an alternative definition of f (x)
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Probability distributions

Cumulative distribution function

We can also define cumulative distribution function F (x), which is the probability that an
experiment will result in a value not grater than x :

F (x) = P(X < x)

Probability distribution function can be then written as the derivative:

f (x) =
dF (x)

dx

Probability that the X value observed is in the range from x1 to x2:

P(x1 < X < x2) = F (x2)− F (x1) =

∫ x2

x1

dx f (x)
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Probability distributions

Moment of order n (nth moment) is defined as

µn = E(X n) = ⟨ xn ⟩ =

∫ +∞

−∞
dx xn f (x) =

∑
i

xni f (xi )

Mean value is, by definition, the first (n = 1) moment of the probability distribution, µ ≡ µ1.

Central moment of order n is defined as

mn = E ((X − µ)n) = ⟨ (x − µ)n ⟩ =

∫ +∞

−∞
dx (x − µ)n f (x)

=
∑
i

(xi − µ)n f (xi )

By calculating moments of the probability distribution we can get information about its shape.
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Probability distributions

Moments of distribution functions
For the lowest order moments we have:

µ0 ≡ 1 m0 ≡ 1 normalization of f (x)

µ1 ≡ µ m1 ≡ 0 definition of mean value of f (x)

The first moment which gives us information about the shape of f (x) is
Variance, which is the second central moment:

σ2 = V(X ) = m2 = ⟨ (x − µ)2 ⟩ =

∫ +∞

−∞
dx (x − µ)2 f (x)

=
∑
i

(xi − µ)2 f (xi )

The square root of the variance is referred to as the standard deviation σ. Describes the
average difference between measurements xi and the mean µ
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Measurements

So far, we considered different properties of probability density functions and random variables
assuming PDF parameters are known.

But this is not the case in most measurements.

We do experiments to extract parameters of the distribution!
Or even to reconstruct the shape of the PDF, if not predicted by theory.

We can constrain shape of the PDF by measuring its moments.

Mean µ and standard deviation σ are often of primary importance.
How do we reconstruct them? What is the precision of our estimate?

Let us assume that random variable X is described by probability distribution f (x).
We perform N experiments resulting in set of N measurements xi , i = 1 . . .N (our sample).
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Measurements

Sample mean
is the arithmetic mean of the obtained numerical results:

x̄ =
1

N

∑
i

xi

Expected value of the sample mean:

E(x̄) =
1

N
E(x1 + . . . xN) =

1

N
N µ = µ

⇒ The sample mean is an unbiased estimator of the true mean µ.

Law of Large Numbers “under suitable conditions”
The sample mean tends to the mean of the distribution

lim
N→∞

1

N

N∑
i=1

xi = µ

In the limit N → ∞ sample mean is no longer a random variable...
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Measurements

Variance of sample mean
In the limit N → ∞ we can obtain exact value of µ.
How precise is our estimate x̄ of the true mean µ for finite N?
We can calculate variance of sample mean:

V(x̄) = ⟨ (x̄ − µ)2⟩ = ⟨ (x − µ) 2 ⟩

=
1

N2

〈∑
i

(xi − µ) ·
∑
j

(xj − µ)

〉

=
1

N2

∑
i

⟨(xi − µ)2⟩ +
1

N2

∑
i , j ̸=i

⟨(xi − µ)(xj − µ)⟩

=
1

N2
N σ2 + 0 =

σ2

N

Sample mean is a random variable with mean µ and standard deviation σ√
N
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Measurements

Variance estimate
Consider the value for the mean squared difference:

d2 ≡ 1

N

∑
i

(xi − x̄)2 =
1

N

∑
i

(xi − µ− (x̄ − µ))2

=
1

N

∑
i

[
(xi − µ)2 − 2(xi − µ)(x̄ − µ) + (x̄ − µ)2

]
=

1

N

∑
i

(xi − µ)2 − 2(x̄ − µ)
1

N

∑
i

(xi − µ) + (x̄ − µ)2

=
1

N

∑
i

(xi − µ)2 − (x̄ − µ)2

Expected value:

⟨d2⟩ = V(xi )− V(x̄) = σ2 − σ2

N
=

N − 1

N
σ2

d2 is NOT an unbiased estimator of the standard deviation σ2 !!!
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Measurements

Sample mean variance

Sample variance for a sample of N measurements xi is defined as

s2 =
1

N − 1

∑
i

(xi − x̄)2

where Bessel’s correction factor

σ2

⟨d2⟩
=

N

N − 1
> 1

is applied to obtain an unbiased estimator of the standard deviation:

⟨s2⟩ = σ2

Bessel’s correction is crucial for proper (unbiased) estimate of the sample mean variance:

V(x̄) =
σ2

N
=

〈
1

N(N − 1)

∑
i

(xi − x̄)2

〉
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A.F.Żarnecki Statictical analysis 04 October 24, 2024 12 / 60



Measurements

Variance estimate 04 sample variance.ipynb

Run multiple numerical experiments to calculate expected value for

y =
∑
i

(xi − x̄)2 = N d2

for xi being gaussian random variables with µ = 0 and σ = 1

100 experiments

Expected value

⟨y⟩ = (N − 1) σ2
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Central Limit Theorem

Probability distribution function f (x) can be uniquely described by specifying all its moments.
But this is an infinite set... We can also present full information about moments by introducing

Moment Generating Function

The moment generating function of a PDF of a random variable X can be written as

M(t) =
∞∑
n=0

tn

n!
µn = µ0 + t µ1 +

t2

2!
µ2 + . . .

⇒ all moments can be now obtained as derivatives at t = 0:

µk =
∂kM(t)

∂tk

∣∣∣∣
t=0

By comparing with a Taylor series expansion of exponential function we realize that

M(t) =

∫ +∞

−∞
dx f (x)

(
1 + tx +

(tx)2

2!
+ . . .

)
=

∫ +∞

−∞
dx f (x) etx = E(etX )
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Central Limit Theorem

Moment Generating Function

If X and Y are two independent variables and Z = X + Y then

Mz(t) = Mx(t) ·My (t)

where Mx , My and Mz are moment generating functions for X , Y and Z

For the Gaussian distribution:

M(t) = exp

(
µt +

1

2
σ2t2

)
∂M(t)

∂t
= (µ+ σ2t) M(t)

∂2M(t)

∂t2
=

[
σ2 + (µ+ σ2t)2

]
M(t)

PDF described by generating function of this form is by definition gaussian
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Central Limit Theorem

Central Limit Theorem
Consider the sum of N independent variables Xi :

Y =
N∑
i=1

Xi

For simplicity, let us assume mean values are zero, E(Xi ) ≡ 0 ⇒ µy = 0

Variance of Y is given by
σ2 = V(Y ) =

N∑
i=1

σ2
i

and increases with increasing N...

⇒ let us consider random variable scaled to unit variance (µz = 0, σz = 1)

Z =
1

σ
Y =

N∑
i=1

Xi

σ

Distribution of Z should tend to a fixed distribution in N → ∞ limit. What is it?
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Central Limit Theorem

Central Limit Theorem
Moment generating function for Z :

MZ (t) =
N∏
i=1

Mi

( t
σ

)
where moment generating function of variables Xi can be written as

Mi

( t
σ

)
= 1 +

σ2
i

2

( t
σ

)2
+

µ3(i)

3!

( t
σ

)3
+ . . .

where the term linear in t vanishes because of µi ≡ 0

Logarithm of moment generating function for Z

lnMZ (t) =
N∑
i=1

lnMi

( t
σ

)
=

N∑
i=1

ln

(
1 +

σ2
i

2

( t
σ

)2
+ . . .

)
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Central Limit Theorem

Central Limit Theorem

Shape of the PDF is defined by M(t) shape for t ≈ 0, we can expand ln(1 + ε)

lnMZ (t) =
N∑
i=1

ln

(
1 +

σ2
i

2

( t
σ

)2
+ . . .

)
=

N∑
i=1

(
σ2
i

2

( t
σ

)2
+ . . .

)

ignoring terms
( t
σ

)3
and higher: ≈

N∑
i=1

σ2
i

2

( t
σ

)2
=

1

2
t2

We conclude that in the limit N → ∞ (and t → 0)

MZ (t) = exp

(
1

2
t2
)

⇒ Z has gaussian distribution function with unit deviation (σ = 1)
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Central Limit Theorem

Central Limit Theorem (2) alternative proof

If all Xi have same variance σ2
x ⇒ variance of Y: σ2 = σ2

x · N ⇒ σ = σx ·
√
N

Mi

( t
σ

)
= 1 +

σ2
x

2

(
t

σx
√
N

)2

+
µ3(i)

3!

(
t

σx
√
N

)3

+ . . .

= 1 +
t2

2N
+

µ3(i)

3!σ3
x

· t3

N3/2
+ . . .

Then the moment generating function for Z can be written as:

MZ (t) =
N∏
i=1

Mi

( t
σ

)
=

(
1 +

t2

2N
+ . . .

)N

and in the limit N → ∞ we get:

MZ (t) = exp

(
1

2
t2
)
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Central Limit Theorem

Example (1) 04 central limit.ipynb

Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 1
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Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 2
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Central Limit Theorem

Example (1) 04 central limit.ipynb

Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 3
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Central Limit Theorem

Example (1) 04 central limit.ipynb

Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
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Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 7
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Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied
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Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied
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Simplest case: Xi are random numbers from uniform distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 20
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Central Limit Theorem

Example (2) 04 central limit2.ipynb

More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 1
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 2
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A.F.Żarnecki Statictical analysis 04 October 24, 2024 22 / 60

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/04_Measurements/04_central_limit2.ipynb


Central Limit Theorem

Example (2) 04 central limit2.ipynb

More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied
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More problematic: Xi are random numbers from exponential distribution
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 30
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 50
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 70
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 100
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 200
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 300
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Central Limit Theorem

Example (2) 04 central limit2.ipynb

More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 500
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Central Limit Theorem
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More problematic: Xi are random numbers from exponential distribution

Distribution of the mean of N values:
compared with normal distribution scaling to σ = 1 applied

N = 1000
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Central Limit Theorem

Central Limit Theorem as presented by M. Bonamente

The sum of a large number of independent random variables is approximately distributed as a
Gaussian. The mean of the distribution is the sum of the means of the variables and the
variance of the distribution is the sum of the variances of the variables. This result holds
regardless of the distribution of each individual variable.

This is a very strong statement!

It is true in most of the “physical” cases, but it is not true in general case...

In our proof we had to assume that M(t) can be defined, that is all moments of the considered
probability distribution can be calculated and are finite. This is not always the case...
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Central Limit Theorem

Example (3) 04 central limit3.ipynb

Consider random numbers xi from Cauchy distribution

f (x) =
1

π
· 1

1 + x2

It is properly normalized, but already its mean is not well defined:

E(X ) =
1

2π

∫ +∞

−∞

2x dx

1 + x2

=
1

2π
ln(1 + x2)

∣∣∣∣+∞

−∞

Higher moments diverge even faster...

Our basic assumption is not fulfilled ⇒ theorem does not hold !

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Central Limit Theorem

Example (3) 04 central limit3.ipynb

Consider random numbers xi from Cauchy distribution

Distribution of the mean of N values: compared with normal distribution

N = 1

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Consider random numbers xi from Cauchy distribution

Distribution of the mean of N values: compared with normal distribution

N = 10

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Consider random numbers xi from Cauchy distribution

Distribution of the mean of N values: compared with normal distribution

N = 100

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Consider random numbers xi from Cauchy distribution

Distribution of the mean of N values: compared with normal distribution

N = 1000

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Central Limit Theorem

Example (3) 04 central limit3.ipynb

Consider random numbers xi from Cauchy distribution

Distribution of the mean of N values: compared with normal distribution

N = 10000

Mean of random numbers from Cauchy distribution has Cauchy distribution itself, even for N → ∞
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Central Limit Theorem

Example (4): Landau distribution

Describes the energy loss distribution for relativistic charged particles matter.
In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

single deposit ⇒ σ
Mean ≈ 0.76

(from histogram range shown)
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Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!
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Example (4): Landau distribution

Describes the energy loss distribution for relativistic charged particles matter.
In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

Nsum = 9 ⇒ σ
Mean ≈ 0.72

(from histogram range shown)
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Central Limit Theorem

Example (4): Landau distribution

Describes the energy loss distribution for relativistic charged particles matter.
In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

Nsum = 16 ⇒ σ
Mean ≈ 0.70

(from histogram range shown)
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Example (4): Landau distribution

Describes the energy loss distribution for relativistic charged particles matter.
In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

Nsum = 25 ⇒ σ
Mean ≈ 0.69

(from histogram range shown)
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In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

Nsum = 100 ⇒ σ
Mean ≈ 0.67
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Central Limit Theorem

Example (4): Landau distribution

Describes the energy loss distribution for relativistic charged particles matter.
In the limit βγ → ∞, mean and RMS of the energy loss distribution are not well defined!

Only the most probable value is...

Sum of Landau distributed deposits is also
described by Landau distribution!

Nsum = 2500 ⇒ σ
Mean ≈ 0.62

(from histogram range shown)

High energy tail significant even in large
detector volumes!
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Statistical analysis of experimental data

Measurements and their uncertainties

1 Measurements

2 Central Limit Theorem

3 Correlations between variables

4 Error propagation

5 Variable simulation

6 Homework
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Correlations between variables

Multiple measurements

It is often the case that we measure two or more variables at the same time and we are
interested in joint probability of obtaining given result.

So far we assumed that variables were independent, eg. coming from different measurements
or from repeated experiment...

Let us consider two random variables X and Y .
We can define joint probability function h(x , y) by the relation:

P(x < X < x + dx && y < Y < y + dy) = h(x , y) dx dy

which should be fulfilled for infinitesimal intervals dx and dy , or:

P(x1 < X < x2 && y1 < Y < y2) =

∫ x2

x1

dx

∫ y2

y1

dy h(x , y)
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Correlations between variables

Joint probability function
Joint probability function gives full information on the measured set of variables. If we want to
look only at one variable, we can consider marginal probability density functions defined as

f (x) =

∫ +∞

−∞
dy h(x , y)

g(y) =

∫ +∞

−∞
dx h(x , y)

We can also directly extract parameters of X and Y distributions:
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f (x) =

∫ +∞

−∞
dy h(x , y)

g(y) =

∫ +∞

−∞
dx h(x , y)

We can also directly extract parameters of X and Y distributions:

µx = E(X ) =

∫ ∫
dx dy x h(x , y)

σ2
x = E((X − µx)

2) =

∫ ∫
dx dy (x − µx)

2 h(x , y)
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Joint probability function
Joint probability function gives full information on the measured set of variables. If we want to
look only at one variable, we can consider marginal probability density functions defined as

f (x) =

∫ +∞

−∞
dy h(x , y)

g(y) =

∫ +∞

−∞
dx h(x , y)

We can also directly extract parameters of X and Y distributions:

µy = E(Y ) =

∫ ∫
dx dy y h(x , y)

σ2
y = E((Y − µy )

2) =

∫ ∫
dx dy (y − µy )

2 h(x , y)
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Correlations between variables

Covariance

Covariance of two random variables X and Y is defined as:

C(X ,Y ) = Cov(X ,Y ) = E((X − µx)(Y − µy )) = σxy

We can also define the correlation coefficient:

ρ(X ,Y ) =
Cov(X ,Y )

σx σy
= ρxy

which is the number between −1 and +1.

When two variables are independent, their correlation is zero:

h(x , y) = f (x) · g(y) ⇒ Cov(X ,Y ) = ρ(X ,Y ) = 0

But the opposite statement is not true!
Vanishing correlation does not guarantee that variables are independent!
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Correlations between variables

Covariance
The role of covariance can be best shown on a simple example.
Let us consider random variable Z = X + Y . The expected value of Z :

E(Z ) = E(X ) + E(Y ) = µx + µy

The variance of Z :

V(Z ) = E((X + Y − µx − µy )
2)

= E((X − µx)
2 + (Y − µy )

2 + 2(X − µx)(Y − µy ))

= V(X ) + V(Y ) + 2Cov(X ,Y )

σ2
z = σ2

x + σ2
y + 2ρxyσxσy

Correlation of input variables can have significant impact on result:

(σx − σy )
2 ≤ σ2

z ≤ (σx + σy )
2
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Correlations between variables

Sample covariance
The true covariance/correlation between variables is usually unknown.

We want to estimate it from the set of N measurements (xi , yi ).
For unbiased estimate we should calculate sample covariance:

s2xy =
1

N − 1

∑
i

(xi − x̄)(yi − ȳ)

The sample correlation coefficient is then defined as

rxy =
s2xy
sx sy

where sx and sy are sample variances (with Bessel’s correction).
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Correlations between variables

2D Gaussian distribution

Normal distribution for two correlated variables X and Y :

h(x , y) = N exp

[
−1

2(1− ρ2xy )

(
(x − µx)

2

σ2
x

− 2ρxy (x − µx)(y − µy )

σxσy
+

(y − µy )
2

σ2
y

)]
where:

N =
1

2πσxσy

√
1− ρ2xy

Due to correlation, distribution of X for fixed Y (and of Y for fixed X ) becomes narrower
than the marginal distribution !

V(X |Y ) = (1− ρ2xy ) · V(X )
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Correlations between variables

2D Gaussian distribution

Graphical presentation of variable correlation: “one sigma” contour
R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

θ i

φ

θ i

jσ

θj

iσ

jσ

iσ

^

θ j
^

ij   iρ  σ

innerσ



Example case of negative correlation

“One sigma” contour: (x , y) values
resulting in h(x , y) = N exp(−1

2)

Ellipse long axis direction:

tan 2ϕ =
2ρxyσxσy
σ2
x − σ2

y
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Correlations between variables

Multiple variable case

Definition of covariance can be generalized to the set of N variables Xi :

cij = Cov(Xi ,Xj) = E((Xi − µi )(Xj − µj))

We can present it in a form of the covariance matrix:

C =


c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
cN1 cN2 . . . cNN


where diagonal elements correspond to variances of the variables

cii = Cov(Xi ,Xi ) ≡ V(Xi )
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Correlations between variables

Multiple variable case
Let us now consider linear combination of N random variables

Y =
N∑
i=1

ai Xi

Expected value is given by (from the linearity of the mean)

µy =
∑

ai µi

The variance can be calculated as:

σ2
y = V

(∑
ai Xi

)
= E

[(∑
ai Xi −

∑
ai µi

)2]

= E

(∑
i

ai (Xi − µi )

)∑
j

aj (Xj − µj)

 =
∑
i ,j

aiaj cij
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Correlations between variables

Multiple variable case
The variance of linear combination of variables

σ2
y =

∑
i ,j

aiaj cij

=
∑
i

a2i σ
2
i + 2

∑
i , j>i

aiaj σiσj ρij

factor 2 introduced due to j > i condition

We can also write linear combination using vector notation:

y = a⊺ · x

where a and x are vectors (a1, . . . , aN) and (x1, . . . , xN), and then

σ2
y = a⊺ C a
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Statistical analysis of experimental data

Measurements and their uncertainties

1 Measurements

2 Central Limit Theorem

3 Correlations between variables

4 Error propagation

5 Variable simulation

6 Homework
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Error propagation

Functions of Random Variables
So far, we have mainly discussed linear combinations of random variables...

Let us consider general case of functional dependence Y = Y (X ),
where X is a random variable with distribution f (x).

Probability density function for dependent variable Y is given by

g(y) = f (x) ·
∣∣∣∣dxdy

∣∣∣∣
y=f (x)

assuming that y(x) is a single-valued function (one-to-one).

If the function considered is not single-valued (i.e. y(x) can not be inverted),
we need to divide X domain into subdomains, where this condition is met...
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Error propagation

Functions of Random Variables

Change of Variables can be also considered in multi-dimensional case

y = y(x)

where components of vector y are given by functions yi (x), i = 1, . . . ,N

Probability density function for dependent variables y is given by

g(y) = f (x(y)) |J|

assuming that function y(x) is one-to-one and can be inverted, with

J =

(
∂xi
∂yj

)
being the Jacobian of the variable transformation (square matrix)
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Error propagation

Mean of Functions of Random Variables

It is important to notice that

µy = E(y(x)) ̸= y(µx)

this relation holds only for linear dependencies but not in general case

It is not sufficient to know µx (reconstructed value of x̄)
⇒ we need to know the probability density function for the variable X

or have access to individual measurements of X

Variance of Functions of Random Variables

In general, one has to calculate it from first principles, integrating over independent variable x
or summing over individual measurements.

However, if variance of X is small, approximate formula can be used...
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Error propagation

Variance of Functions of Random Variables

We can use Taylor series expansion about the means of variables x

y(x) ≈ µy +
∑
i

(xi − µi )
∂y

∂xi

∣∣∣∣
xi=µi

+ . . .

where we also approximate y(µ̂x) ≈ µy

and, assuming the higher order terms can beneglected, we get

E[(y − µy )
2] = E

(∑
i

(xi − µi )
∂y

∂xi

∣∣∣∣
xi=µi

)∑
j

(xj − µj)
∂y

∂xj

∣∣∣∣
xj=µj


=

∑
i , j

∂y

∂xi

∣∣∣∣
xi=µi

∂y

∂xj

∣∣∣∣
xj=µj

E [(xi − µi )(xj − µj)]

=
∑
i , j

∂y

∂xi

∂y

∂xj
cij
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Error propagation

General form

Covariance matrix for y = y(x) can be approximate as:

Cov(Yk ,Yl) =
∑
i , j

∂yk
∂xi

∂yl
∂xj

Cov(Xi ,Xj)

In matrix notation:

CY = A CX A⊺

where A is a matrix of partial derivatives:

Ai ,j =
∂yi
∂xj

∣∣∣∣
µ̂x
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Error propagation
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Error propagation

Example

For a product of independent random variable powers:

y =
∏
i

xαi
i

we have
∂y

∂xi
=

αi

xi
y

⇒ variance of Y can be calculated as

σ2
y =

∑
i , j

∂y

∂xi

∂y

∂xj
Cov(Xi ,Xj) =

∑
i

(
αi

xi
y

)2

σ2
i

Relative variance of the product is a quadratic sum of relative variances:(
σy
µy

)2

=
∑
i

(
αi

σi
µxi

)2
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as we assume variables are independent
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Error propagation

Example (2)

Consider cuboid with dimensions a, b and c .
Assuming lengths of the edges are measured with precision σ, calculate the uncertainty on
cuboid volume V and the total length L of the edges, and their correlation:

V = a · b · c and L = 4 (a+ b + c)

Solution
Assume measurements of a, b and c
(variables X) are independent:

CX =

 σ2 0 0
0 σ2 0
0 0 σ2


Matrix of partial derivatives for
transformation to V and L (variables Y)

A =

(
∂yi
∂xj

)
=

(
bc ac ab

4 4 4

)
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Error propagation

Example (2)

Using the general formula:

CY = A CX A⊺ =

 b2c2 + a2c2 + a2b2 4(bc + ac + ab)

4(bc + ac + ab) 48

 · σ2

resulting in:

σV = σ ·
√
b2c2 + a2c2 + a2b2

σL = 4
√
3 σ

ρ(V , L) =
bc + ac + ab√

3(b2c2 + a2c2 + a2b2)
>

1√
3

Correlation is 1 for the cube (a = b = c) !
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Statistical analysis of experimental data

Measurements and their uncertainties

1 Measurements

2 Central Limit Theorem

3 Correlations between variables

4 Error propagation

5 Variable simulation

6 Homework
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Variable simulation

Direct Method

Let us assume we have a large number of uniformly distributed random numbers corresponding
to the uniform probability distribution:

u(r) =


0 for r < 0

1 for 0 ≤ r < 1

0 for r ≥ 1

This type of uniform random number generators is commonly accessible in most systems and
numerical libraries.

Can we use uniform random number generator to generate random numbers from arbitrary
probability distribution f (x)?
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Variable simulation

Direct Method

Very simple procedure can be used.
Let us consider cumulative distribution function for X , F (x):

P(X ≤ x) = F (x)

By definition, probability distribution for U = F (X ) is uniform:

F (u) = P(U ≤ F (x)) = F (x) = u

f (u) =
dF (u)

du
= 1

If cumulative distribution function F (x) can be inverted, we can generate random numbers
from f (x) by using relation:

x = F−1(r)

where r is uniformly distributed random number (from u(r))
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Variable simulation

Direct Method example 04 generation.ipynb

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

which can be easily inverted, resulting in:

x = tan

(
π

(
r − 1

2

))
where r is uniformly distributed random number

A.F.Żarnecki Statictical analysis 04 October 24, 2024 49 / 60

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/04_Measurements/04_generation.ipynb


Variable simulation

Direct Method example 04 generation.ipynb

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

Example generation, N = 100
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Nice example is Cauchy distribution:
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π
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1 + x2
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Example generation, N = 1000
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Variable simulation

Direct Method example 04 generation.ipynb

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

Example generation, N = 10000
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Variable simulation

Direct Method example 04 generation.ipynb

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

Example generation, N = 100000
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Variable simulation

von Neumann method

The direct method is very elegant and efficient, but requires that the invert of cumulative
distribution is known. This is not the case in many problems - solution is not general.
We need an alternative...

Example problem:
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Variable simulation

von Neumann method

The direct method is very elegant and efficient, but requires that the invert of cumulative
distribution is known. This is not the case in many problems - solution is not general.
We need an alternative...

Example problem:

f (x) =


0 for x < −1

N
[
1−

√
1− (1− |x |)2

]
for − 1 ≤ x ≤ 1

0 for x > 1

where normalization factor

N =
2

4− π
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Variable simulation

von Neumann method

We can notice that

fmax = max
x

f (x) = N

Assume f (x) is non-zero only for a ≤ x ≤ b.

We can then apply the following procedure:

generate value x uniformly distributed in [a, b]

generate test variable r from uniform distribution ([0, 1[)

accept generated value of x , if r · fmax < f (x)
otherwise repeat from the beginning

This procedure is called von Neumann Acceptance–Rejection Technique
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 10
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 100
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 1000
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 10000
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 100000

We can perfectly reproduce the assumed probability distribution
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 1000000

We can perfectly reproduce the assumed probability distribution
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Variable simulation

04 generation2.ipynb

von Neumann method

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 1000000

However, this procedure can not be directly applied if a or b → ±∞
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Variable simulation

General method

For PDF distributions with infinite domain we can combine direct and von Neumann methods.

Example: generate photon scattering angles for diffractive scattering

f (x) = N · sin
2 x

x2

One can check that this function is always smaller than:

g(x) =
3

2
N · 1

1 + x2

and both functions have similar asymptotic behavior.

Also, cumulative distribution function for g(x) can be inverted,
so we know how to generate random numbers with this distribution...
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Variable simulation

General method

The following procedure can now be used:

generate value x distributed according to g(x)

generate test variable r from uniform distribution ([0, 1[)

accept generated value of x , if r < f (x)/g(x)
otherwise repeat from the beginning
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Variable simulation

General method 04 generation3.ipynb

Described procedure applied to the diffractive problem:

Test generation, N = 100
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Variable simulation

General method 04 generation3.ipynb

Described procedure applied to the diffractive problem:

Test generation, N = 1000
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Variable simulation

General method 04 generation3.ipynb

Described procedure applied to the diffractive problem:

Test generation, N = 10000
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Variable simulation

General method 04 generation3.ipynb

Described procedure applied to the diffractive problem:

Test generation, N = 100000
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Variable simulation

General method 04 generation3.ipynb

Described procedure applied to the diffractive problem:

Test generation, N = 1000000

We reproduce the expected probability distribution
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Variable simulation

Gaussian Variable

Cumulative distribution function can not be inverted analytically.
However, we can use a simple trick, consider 2-D distribution:

g(x , y) =
1

2π
· exp

(
−1

2
(x2 + y2)

)
for simplicity we assume µx = µy = 0 and σx = σy = 1
and change variables to polar coordinates:

g(R, θ) =
1

2π
R exp

(
−1

2
R2

)
= h(R) · t(θ)

Cumulative distribution functions can be now considered for R and θ:

H(R) = 1− exp

(
−1

2
R2

)
T (θ) =

1

2π
θ

where R > 0 and 0 ≤ θ ≤ 2π
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Variable simulation

Gaussian Variable
Cumulative distribution functions for r and θ can be inverted resulting in the following formula
for generation of a pair of random variables:

R =
√
−2 ln(1− r1)

θ = 2π r2

where r1 and r2 are two independent uniformly distributed random numbers

We can now transform back to the (x , y) plane:

x = R cos θ =
√
−2 ln(1− r1) · cos(2π r2)

y = R sin θ =
√
−2 ln(1− r1) · sin(2π r2)

⇒ from pair (r1, r2) of uniform distributed numbers we get a pair (x , y) of independent (!)
random numbers from normal distribution
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Variable simulation

Correlated 2D Gaussian

What, if we need to generate pair (x , y) of correlated random numbers?

For 2-D Gaussian distribution it can be done by smart “rotation” of variables. Rotation angle:

ϕ =
1

2
arcsin(ρxy )

Then we can generate correlated pair of variables using the formula:

x = g1 cosϕ + g2 sinϕ

y = g1 sinϕ + g2 cosϕ

where (g1, g2) is a pair of independent random numbers from Gaussian distribution
(assuming σ = 1 in all cases)
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Statistical analysis of experimental data

Measurements and their uncertainties

1 Measurements

2 Central Limit Theorem

3 Correlations between variables

4 Error propagation

5 Variable simulation

6 Homework
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Homework

Homework

Consider production of rectangular tables with length ℓ = 1.4m and width w = 1.0m.

Tolerance of production process (standard deviation) is σℓ =2mm for the table length
and σw =1mm for the table width:

what is the expected variation (standard deviation) of the surface of the table,
assuming table length and width are independent variables?

what is the expected variation of the total length of the table sides?

what is the expected correlation between the surface and the total edge length?

perform numerical experiment generating table lengths and widths from the Gaussian
distribution to confirm the result.

Solutions should be uploaded until November 6.
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