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Correlations between variables

Multiple variable case

Definition of covariance can be generalized to the set of N variables Xi :

cij = Cov(Xi ,Xj) = E((Xi − µi )(Xj − µj))

We can present it in a form of the covariance matrix:

C =


c11 c12 . . . c1N
c21 c22 . . . c2N
...

...
cN1 cN2 . . . cNN


where diagonal elements correspond to variances of the variables

cii = Cov(Xi ,Xi ) ≡ V(Xi )
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Error propagation

Functions of Random Variables

Change of Variables can be also considered in multi-dimensional case

y = y(x)

where components of vector y are given by functions yi (x), i = 1, . . . ,N

Probability density function for dependent variables y is given by

g(y) = f (x(y)) |J|

assuming that function y(x) is one-to-one and can be inverted, with

J =

(
∂xi
∂yj

)
being the Jacobian of the variable transformation (square matrix)

A.F.Żarnecki Statictical analysis 05 October 31, 2024 4 / 54



Error propagation

General form

Covariance matrix for y = y(x) can be approximate as:

Cov(Yk ,Yl) =
∑
i , j

∂yk
∂xi

∂yl
∂xj

Cov(Xi ,Xj)

In matrix notation:

CY = A CX A⊺

where A is a matrix of partial derivatives:

Ai ,j =
∂yi
∂xj

∣∣∣∣
µ̂x
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Variable simulation

Direct Method

Let us assume we have a large number of uniformly distributed random numbers corresponding
to the uniform probability distribution:

How to generate numbers from arbitrary probability distribution f (x)?

We need to consider cumulative distribution function for X , F (x):

P(X ≤ x) = F (x)

If cumulative distribution function F (x) can be inverted, we can generate random numbers
from f (x) by using relation:

x = F−1(r)

where r is uniformly distributed random number (from u(r))
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Variable simulation

Direct Method example

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

which can be easily inverted, resulting in:

x = tan

(
π

(
r − 1

2

))
where r is uniformly distributed random number
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Variable simulation

Direct Method example

Nice example is Cauchy distribution:

f (x) =
1

π
· 1

1 + x2
⇒ F (x) =

1

π
· arctan(x) + 1

2

Example generation, N = 100000
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Variable simulation

von Neumann method

When cumulative distribution function can not be inverted we can define

fmax = max
x

f (x) = N

Assume f (x) is non-zero only for a ≤ x ≤ b.

We can then apply the following procedure:

generate value x uniformly distributed in [a, b]

generate test variable r from uniform distribution ([0, 1[)

accept generated value of x , if r · fmax < f (x)
otherwise repeat from the beginning

This procedure is called von Neumann Acceptance–Rejection Technique
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Variable simulation

von Neumann method example

Acceptance–Rejection Technique applied to the example problem:

Test generation, N = 1000000

However, this procedure can not be directly applied if a or b → ±∞
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Variable simulation

General method
For arbitrary probability distribution f (x) (also with infinite domain).

We need to find “similar” distribution g(x), such that its cumulative distribution exists and can
be inverted, so we know how to generate random numbers from g(x) distribution. We define

max
x

f (x)

g(x)
= fmax

The following procedure can then be used:

generate value x distributed according to g(x)

generate test variable r from uniform distribution ([0, 1[)

accept generated value of x , if r · fmax < f (x)/g(x)
otherwise repeat from the beginning

The closer g(x) is to f (x), the more efficient is the procedure...
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Variable simulation

General method example
Photon scattering angles for diffractive scattering

f (x) = N · sin
2 x

x2

Test generation, N = 1000000
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Monte Carlo integration

von Neumann method for random number generation

Let us considered test function:

f (x) =


0 for x < −1

1−
√

1− (1− |x |)2 for − 1 ≤ x ≤ 1

0 for x > 1

not normalized now
(contrary to the example in lecture 4)
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Monte Carlo integration

von Neumann method for random number generation 05 generation.ipynb

At each step, we generate pair of numbers (x , r · fmax) from uniform distributions
⇒ random point inside 2× fmax rectangular

Test generation, N = 100 ⇒ 27 points accepted
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Monte Carlo integration

von Neumann method for random number generation 05 generation.ipynb

At each step, we generate pair of numbers (x , r · fmax) from uniform distributions
⇒ random point inside 2× fmax rectangular

Test generation, N = 1000 ⇒ 236 points accepted
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Monte Carlo integration

von Neumann method for random number generation 05 generation.ipynb

At each step, we generate pair of numbers (x , r · fmax) from uniform distributions
⇒ random point inside 2× fmax rectangular

Test generation, N = 10000 ⇒ 2146 points accepted
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Monte Carlo integration

von Neumann method for random number generation 05 generation.ipynb

At each step, we generate pair of numbers (x , r · fmax) from uniform distributions
⇒ random point inside 2× fmax rectangular

Test generation, N = 100000 ⇒ 21388 points accepted

⇒ Fraction of accepted events is proportional to the to the integral of f (x)
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Monte Carlo integration

General approach

Assuming number of events accepted in N tries is Nf , probability of accepting an event:

p = lim
N→∞

Nf

N
=

∫
dx f (x)

fmax ·
∫
dx g(x)

=

∫
dx f (x)

I0

where I0 is the total surface covered by generated (x , r · fmax) pairs.

We can thus write for integral of f :

If =

∫
dx f (x) =

Nf

N
· fmax ·

∫
dx g(x) = p · I0

with uncertainty, which can be estimated from binomial distribution assuming N ≫ 1

σI =

√
p(1− p)

N
· I0
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Monte Carlo integration

Example

Our test problem: uniform distribution was used for g(x)

f (x) = 1−
√
1− (1− |x |)2 and g(x) = 0.5 for − 1 ≤ x ≤ 1

We find that:

fmax = 2

I0 = fmax ·
∫

dx g(x) = fmax = 2

From the last (largest) generation we have:

N = 100000 Nf = 21388 ⇒p = 0.21388

If = 0.42776

σI = 0.00259

where expected values is ⟨If ⟩ = 2− π
2 = 0.429203673...
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Monte Carlo integration

Applications
Described procedure can be used not only to calculate integrals of one-dimensional functions,
it is much more general... It can be easily extended to multiple dimensions...

How to
calculate volume of a given shape?

Standard procedure:
scan all dimensions using dense point grid and
sum cells with centers inside the volume

Monte Carlo integration:
Generate random points in the considered
space and count points inside the volume
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Monte Carlo integration

2-D example 05 generation 2.ipynb

Consider surface calculation for the partially eclipsed sun.

Assume RS = RM = 1 and distance between centers ∆ = 1

What is the surface of this shape?
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Monte Carlo integration

2-D example 05 generation 2.ipynb

Consider surface calculation for the partially eclipsed sun.

Generation results for N = 100

Exact calculation: S = π
3 +

√
3
2 ≈ 1.91322296
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2-D example 05 generation 2.ipynb

Consider surface calculation for the partially eclipsed sun.

Generation results for N = 1000

Exact calculation: S = π
3 +

√
3
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Monte Carlo integration

2-D example 05 generation 2.ipynb

Consider surface calculation for the partially eclipsed sun.

Generation results for N = 10’000

Exact calculation: S = π
3 +

√
3
2 ≈ 1.91322296
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Monte Carlo integration

2-D example 05 generation 2.ipynb

Consider surface calculation for the partially eclipsed sun.

Generation results for N = 1’000’000’000
only 100 points shown

Exact calculation: S = π
3 +

√
3
2 ≈ 1.91322296
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Monte Carlo integration

Example (3)

Simplest possible case: calculate volume of a sphere in N dimensions
Unit sphere volume can be defined as:

VN = {x ∈ RN : |x| ≤ 1}
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Monte Carlo integration

Example (3) 05 numerical integration.ipynb 05 mc integration.ipynb

Compare two approaches: standard variable scan and MC integration

Precision of the result Vnum−Vtrue
Vtrue

for N = 3, as a function of the total number of steps

Both methods give comparable precision...
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Monte Carlo integration

Example (3) 05 numerical integration 2.ipynb 05 mc integration 2.ipynb

Compare two approaches: standard variable scan and MC integration

Precision of the result Vnum−Vtrue
Vtrue

for N = 5, as a function of the total number of steps

MC method converges much faster... (note different step number scale)
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Monte Carlo integration

Example (4)
In one of the exercises at the Physics Laboratory (P8): total flux of the secondary cosmic rays.
To extract the flux, we need the effective solid angle corresponding to the detector acceptance.

Assume the flux is measured by a coincidence of two parallel
scintillating detector planes, separated by distance H.

Square detector (A× A) are placed directly one above the
other and have negligible thickness.

We need to know what is the average solid angle “observed”
be a small element of the lower counter?

A.F.Żarnecki Statictical analysis 05 October 31, 2024 23 / 54



Monte Carlo integration

Example (4)

Solid angle “visible” from the particular point (x , y) on the lower detector surface can be
defined by the integral:

dΩ(x , y) =

∫ 1

0
d(cosΘ)

∫ 2π

0
dϕ · F (x ′, y ′)

where Θ and ϕ are polar coordinates defining the particle direction and (x ′, y ′) are
coordinates of the particle in the upper detector plane:

x ′ = x + H · tan(θ) · cos(ϕ)
y ′ = y + H · tan(θ) · sin(ϕ)

Function F (x ′, y ′) defines the condition that the particle crosses the upper counter:

F (x ′, y ′) = 1 for 0 < x ′ < A and 0 < y ′ < A

= 0 otherwise
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Monte Carlo integration

Example (4)

To obtain the effective solid angle we need to average dΩ(x , y) over the lower surface:

Ω =
1

A2

∫ A

0
dx

∫ A

0
dy · dΩ(x , y)

=
1

A2

∫ A

0
dx

∫ A

0
dy

∫ 1

0
d(cosΘ)

∫ 2π

0
dϕ · F (x ′, y ′)

Even in this relatively simple problem, we get a multidimensional integral which is very difficult
to calculate analytically

On the other hand, it can be very easily integrated with MC approach

Uniform distribution on the sphere corresponds to uniform distribution in cosΘ and ϕ.
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Monte Carlo integration

Example (4)

Integration procedure:

generate random point (x , y) on the lower detector surface
uniform distributions for x ∈ [0,A[ and y ∈ [0,A[

generate random direction in space
uniform distribution for cosΘ ∈ [0, 1[ and ϕ ∈ [0, 2π[
extrapolate particle track to the upper detector plane
calculate coordinates (x ′, y ′) in the upper plane
count particles which pass the active detector surface (Np)

The result of the integration will be given by the fraction of the events passing the second
detector, multiplied by the solid angle corresponding to the whole hemisphere (2π)

Ω = 2π · Np

N
where N is the total number of generated events
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Monte Carlo integration

Example (4)

Example integration results for A = 15 cm and H = 26 cm

We can easily get precision much higher than precision of input parameters
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Monte Carlo integration

General case
Examples presented considered the special case: input random variables had uniform
distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a function h(x) of random
variable vector x described by f (x) pdf:

µh ≡ Ef [h(x)] =

∫
dx h(x) f (x)

Monte Carlo determination of µh assumes we can generate random variables from f (x).
We can then calculate:

µMC = lim
N→∞

1

N

∑
i

h(xi )

where xi , i = 1, . . . ,N are random (input) variables generated from f (x)
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Monte Carlo integration

Importance sampling
When h(x) varies strongly in the considered variable range, statistical precision on the mean
can be poor. Can it be improved?

Possible solution is to generate x using probability density more “focused” on the areas where
h(x) is large. Optimal choice turns out to be

g(x) ∼ h(x) f (x)

but approximate descriptions also work well.
When generating input variables from g(x), the mean value of h(x) can be now calculated as:

µIS =
1

N

∑
i

h(xi ) ·
f (xi )

g(xi )

where the second term corrects for the modified pdf.
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Monte Carlo integration

Weighted Monte Carlo

General method for generating random points in multi-dimensional space using
acceptance–rejection technique can have very low efficiency, if probability distribution function
f (x) varies a lot, eg. has sharp peaks.

Assume we know how to generate random numbers from g(x).
We can then apply the following procedure:

generate xi distributed according to g(x)
accept all generated value xi ,
but consider them with additional weight: wi = f (x)/g(x)

For example, when calculating the expectation value of h(x):

µMC → µwMC =

∑
i wi h(xi )∑

i wi

“unweighted” samples considered previously correspond to wi ≡ 1
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Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to unweighted sample of:

Neq =
N2
w

V(Nw )
=

(
∑

i wi )
2∑

i w
2
i

Same relative uncertainty,
σNw

Nw
, as for Neq events measured from Poisson distribution (V(Neq) = Neq)

A.F.Żarnecki Statictical analysis 05 October 31, 2024 31 / 54



Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N → Nw =
∑
i

wi

Variance of the sum of weights:

V(Nw ) =
∑
i

w2
i

Statistical power of the weighted Monte Carlo sample is equivalent to unweighted sample of:

Neq =
N2
w

V(Nw )
=

(
∑

i wi )
2∑

i w
2
i

Same relative uncertainty,
σNw

Nw
, as for Neq events measured from Poisson distribution (V(Neq) = Neq)
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Monte Carlo integration

General remarks

Monte Carlo techniques are widely used not only for integration but for modeling of
multi-dimensional random variable distributions in general.

Simulation of particle collision events or particle interactions with matter are just special cases,
widely used in particle physics. It allows to predict the experimental result with high precision.

While Monte Carlo methods allow us to perform very complicated
computations in an efficient way, we still need to know all details.

It is not a “magic box” - if we do not know any of the input distributions or parameters,
we can not perform the integration or simulation needed.

Simplifying assumptions are made sometimes to cover our lack of knowledge (eg. assuming
uniform distribution for particle decays) but this has to be clearly stated, as can result in
systematic bias of results.
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Statistical analysis of experimental data

Monte Carlo methods

1 Monte Carlo integration

2 Parameter estimation

3 Maximum Likelihood Method

4 Homework
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Parameter estimation

Weighted mean

If we perform N experiments resulting in set of measurements xi , i = 1 . . .N, then the sample
mean (see lecture 4):

x̄ =
1

N

∑
i

xi

gives us an unbiased estimator of the true mean µ for random variable X .

However, is it the optimal estimate? (with smallest variance)

This is the case, if the same experiment is repeated many times,
so the probability distribution function for all input xi is the same.

If input measurements have different pdf’s (different variances),
“simple mean” is not the best choice, we can do better...
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Parameter estimation

Weighted mean example

Consider measurements of the mean lifetime of X particle performed by N groups. Particle is
difficult to produce so the measurement precision is dominated by statistical fluctuations in the
measured decay times.

How to combine results τi presented by different groups?

The best procedure would be to average individual decay times measured by all groups.
This is equivalent to:

τ̄ =
1

N

∑
i

Ni τi

where Ni is the number of decays measured by group i and N is the total number of
measured decays

N =
∑
i

Ni
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Parameter estimation

Weighted mean example

What can we do, if groups do not present event numbers, only the mean lifetime uncertainty?

We can use properties of the exponential distribution

V(t) = τ2

σ2 = V( ⟨t⟩ ) = τ2/N

and estimating the number of decays measured, Ni = τ2/σ2
i , we get:

τ̄ = σ2
∑
i

τi
σ2
i

where σ2 is the expected variance of the weighted mean:

1

σ2
=

∑
i

1

σ2
i
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Parameter estimation

Weighted mean

We can also obtain this formula from minimum variance requirement.
General expression for mean:

x̄ =
∑
i

ai xi , where
∑
i

ai = 1 .

Variance of the linear combination (lecture 4)

V(x̄) =
∑
i

a2i σ2
i

− 2 λ (
∑
i

ai − 1)

For minimum variance, partial derivatives should be zero:

∂V
∂ai

= 2 ai σ
2
i − 2 λ = 0 ⇒ ai =

λ

σ2
i
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Parameter estimation

Weighted mean
What about averaging measurements which are not independent? x̄ = a⊺ x

I - vector of onesIn the most general case, variance of the weighted mean is given by

σ2
x̄ = a⊺ Cx a

− 2 λ (a⊺I− 1)

Minimizing mean variance we compare partial derivatives to zero and get

Cx a = λ · I

where λ can be constrained from the boundary condition a⊺I = 1.

This is a linear set of equations, which can be solved:
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I - vector of onesIn the most general case, variance of the weighted mean is given by
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Parameter estimation

Weighted mean example

Let four groups reported average number of Gamma Ray Bursts per year, per unit solid angle.
For simplicity, let us assume each group observes one unit of solid angle.
Number of bursts observed by group i in year j is denoted as nij . Total number is Ni .

First group wanted to be first, published their result already after one year. They quoted:

µ1 = N1 ±
√

N1 = n11 ±
√
n11

Second group published results after two years of data taking:

µ2 =
1

2
N2 ± 1

2

√
N2 =

1

2
(n21 + n22) ± 1

2

√
n21 + n22

Third and fourth group published results covering three and four years.

µ3 =
1

3
(n31 + n32 + n33) µ4 =

1

4
(n41 + n42 + n43 + n44)

How should we average these measurements ?!
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Parameter estimation

Weighted mean example

The proper procedure to combine these measurements strongly depend on the actual way the
observations were done. In this particular case, the key questions is:

Did they observe the same region of the sky at the same time?
(so they did observe and count the same GRBs)

How much did their acceptance (in time or solid angle coverage) overelap?

Let us consider two extreme cases:

four experiments observing different sky regions, unrelated observations

four experiments observing exactly the same sky region, same bursts

We do assume that the GRB rate is constant in time.
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Parameter estimation

Weighted mean example Case 1 - observing different parts of the sky

We assume that N1, N2, N3 and N4 are independent random numbers.
The covariance matrix for the variables Ni is thus diagonal:

CN =


N1

N2

N3

N4



We can use it to calculate covariance matrix for set of measurements µi ,
using the partial derivatives:

∂µk

∂nj
=

{ 1
k for k = j

0 k ̸= j see lecture 4
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Parameter estimation

Weighted mean example Case 1 - observing different parts of the sky

The covariance matrix for the set of measurements µi is:

Cµ =


N1

1
4N2

1
9N3

1
16N4



By solving the set of equations we get:

a⊺ = λ

(
1

N1
,

4

N2
,

9

N3
,
16

N4

)
≈ λ

µ
(1, 2, 3, 4)

Where we assumed all measurements are consistent expected results ⟨Ni ⟩ = i · µ
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A.F.Żarnecki Statictical analysis 05 October 31, 2024 42 / 54



Parameter estimation

Weighted mean example Case 1 - observing different parts of the sky

Taking normalization condition into account we finally get

a⊺ =
1

10
(1, 2, 3, 4)

and the final result is

µ̄ = a⊺ µ =
1

10
(µ1 + 2µ2 + 3µ3 + 4µ4)

=
1

10
(N1 + N2 + N3 + N4) =

Ntot

Ttot

As the measurements are independent, we can just take the total event count Ntot

and divide by the total measurement time (in years) Ttot . This gives the most precise estimate.
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Parameter estimation

Weighted mean example Case 2 - observing same region in the sky

We assume n1, n2, n3 and n4 are numbers of GRB in each year (same for each experiment).
They are independent, the covariance matrix for the variables ni is thus diagonal:

Cn =


n1

n2

n3

n4



We can calculate covariance matrix for set of measurements µi , using the partial derivatives
in new variables:

∂µk

∂nj
=

{ 1
k for k ≥ j

0 k < j
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Parameter estimation

Weighted mean example Case 2 - observing same region in the sky

The covariance matrix for the set of measurements µi is more complicated now:

Cµ =


n1

n1
2

n1
3

n1
4

n1
2

n1+n2
4

n1+n2
6

n1+n2
8

n1
3

n1+n2
6

n1+n2+n3
9

n1+n2+n3
12

n1
4

n1+n2
8

n1+n2+n3
12

n1+n2+n3+n4
16



By solving the set of equations we get:

a⊺ = λ

(
1

n1
− 1

n2
,

2

n2
− 2

n3
,

3

n3
− 3

n4
,

4

n4

)
If GRB rate is constant in time (n1 ≈ n2 ≈ n3 ≈ n4) average is clearly dominated by the
fourth measurement (as expected!).
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Parameter estimation

Weighted mean example Case 2 - observing same region in the sky

If we assume that ⟨n1⟩ = ⟨n2⟩ = ⟨n3⟩ = ⟨n4⟩ = n (constant rate)
then the (true) covariance matrix for the set of measurements µi is:

Cx =


n n

2
n
3

n
4

n
2

n
2

n
3

n
4

n
3

n
3

n
3

n
4

n
4

n
4

n
4

n
4


and by solving the set of equations we get:

a⊺ = λ

(
0, 0, 0,

4

n

)
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Weighted mean example Case 2 - observing same region in the sky
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then the (true) covariance matrix for the set of measurements µi is:

Cx =


n n

2
n
3

n
4

n
2

n
2

n
3

n
4

n
3

n
3

n
3

n
4

n
4

n
4

n
4

n
4


and by solving the set of equations we get:

a⊺ = (0, 0, 0, 1)

Only the last measurement, including all observations, is relevant. All earlier can be discarded...
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Statistical analysis of experimental data

Monte Carlo methods

1 Monte Carlo integration

2 Parameter estimation

3 Maximum Likelihood Method

4 Homework
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Maximum Likelihood Method

General problem

Presented above was a simple example of a more general problem: how to estimate parameters
of the probability distribution function from the results of the experiment (measurements).

In many cases, parameter value can not be directly extracted from the measurement results

In the general case, shape of the probability density function for measurement result x:

x = (x1, . . . , xn)

depends on a set of pdf parameters:

λ = (λ1, . . . , λp)

so the probability density should be written as:

f (x;λ)
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Maximum Likelihood Method

Likelihood Function

Probability density functions describes probability for given outcome of the experiment to be
observed:

dP = f (x;λ) dx

If experiment is repeated N times, we have N independent measurements
⇒ then the combined probability

dP =
N∏
j=1

f (x(j);λ) dx

We can use this probability to compare different parameter sets. If

N∏
j=1

f (x(j);λ1) >

N∏
j=1

f (x(j);λ2)

we can conclude that λ1 describes our experimental results better than λ2
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Maximum Likelihood Method

Maximum Likelihood Method

The product:

L =
N∏
j=1

f (x(j);λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set λ we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

ℓ = ln L =
N∑
j=1

ln f (x(j);λ)

we can look for maximum value of ℓ or minimum of −2 ℓ = −2 ln L
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Maximum Likelihood Method

Example
Let us consider N measurements of source radioactivity (numbers of decays in given time
window). Each measurement is described by the Poisson probability distribution. So the
likelihood function is:

L =
N∏
i=1

P(ni ;µ) =
N∏
i=1

µni e−µ

n!

Log-likelihood:
ℓ = lnµ

∑
ni − N µ −

∑
ln n!

∂ℓ

∂µ
=

1

µ

∑
ni − N = 0

⇒ µ =
1

N

∑
ni

we reproduce previous result (mean of the individual measurements)
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Maximum Likelihood Method

Example (2)
Let us consider N independent measurements of variable X with non-uniform uncertainties.
Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (xi ;µ, σi ) =
N∏
i=1

1

σi
√
2π

exp

(
−1

2

(xi − µ)2

σ2
i

)

Log-likelihood:

ℓ = −1

2

∑ (xi − µ)2

σ2
i

+ const

∂ℓ

∂µ
=

∑ xi − µ

σ2
i

= 0

⇒ µ = σ2
∑ xi

σ2
i

with
1

σ2
=

∑ 1

σ2
i
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A.F.Żarnecki Statictical analysis 05 October 31, 2024 52 / 54



Maximum Likelihood Method

Example (2)
Let us consider N independent measurements of variable X with non-uniform uncertainties.
Assuming measurement fluctuations are described by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (xi ;µ, σi ) =
N∏
i=1

1

σi
√
2π

exp

(
−1

2

(xi − µ)2

σ2
i

)
Log-likelihood:

ℓ = −1

2

∑ (xi − µ)2

σ2
i

+ const

∂ℓ

∂µ
=

∑ xi − µ

σ2
i

= 0

⇒ µ = σ2
∑ xi

σ2
i

with
1

σ2
=

∑ 1

σ2
i
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Statistical analysis of experimental data

Monte Carlo methods

1 Monte Carlo integration

2 Parameter estimation

3 Maximum Likelihood Method

4 Homework
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Homework

Homework Solutions to be uploaded by November 13.

Use Monte Carlo method to calculate volume of a solid constructed as an intersection of three
cylinders, with unit diameter and unit height, and perpendicular axes.

Unit cube
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A.F.Żarnecki Statictical analysis 05 October 31, 2024 54 / 54



Homework

Homework Solutions to be uploaded by November 13.

Use Monte Carlo method to calculate volume of a solid constructed as an intersection of three
cylinders, with unit diameter and unit height, and perpendicular axes.

Second cylinder
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Homework

Homework Solutions to be uploaded by November 13.

Use Monte Carlo method to calculate volume of a solid constructed as an intersection of three
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Homework

Homework Solutions to be uploaded by November 13.

Use Monte Carlo method to calculate volume of a solid constructed as an intersection of three
cylinders, with unit diameter and unit height, and perpendicular axes.

Intersection of three cylinders
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