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A.F.Żarnecki Statictical analysis 07 November 14, 2024 2 / 43



Maximum Likelihood Method

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates λ̂ are
given by the measured variable values x.

Unlike parameters λ, parameter estimates λ̂ are random variables (functions of x) and so we
can consider covariance matrix for λ̂:

Cx = Cλ̂ =

(
− ∂2ℓ

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

For the uncorrelated parameters (diagonal covariance matrix):

σλ̂i
=

(
− ∂2ℓ

∂λ2
i

)−1/2

A.F.Żarnecki Statictical analysis 07 November 14, 2024 3 / 43



Maximum Likelihood Method

Parameter covariance matrix

Considered example was based on the Gaussian distribution.
Standard deviation is one of the parameters of the p.d.f., can be easily extracted from
log-likelihood:

σi =
√

Cii

However, this procedure works only in the Gaussian approximation.
How to define parameter uncertainty in the general case?

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parameters
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Confidence intervals

Normal distribution

Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to differ from the true value by more than Nσ:

α
± 1 σ ⇒ 31.73 %
± 2 σ ⇒ 4.55 %
± 3 σ ⇒ 0.27 %
± 4 σ ⇒ 0.0063 %
± 5 σ ⇒ 0.000057 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

Fluctuations up and down are observed with equal probability...
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Confidence intervals

Normal distribution in N-D

It is also important to notice that the fractions presented previously
(eg. 68% within ±1σ) refer to one-dimensional normal distribution only!

If we consider 2-D distribution

Less than 40% is contained inside 1σ contour...

Fractions within Nσ contours:

1σ fraction above 50% only for N=1 !

G. Bohm and G. Zech
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Confidence intervals

Interpreting results

So far we have only considered distribution of experimental results for given probability
distribution, f (x;λ), when the parameter values λ are known.

The actual situation is usually different: for given set of measurements x we extract estimates
of the parameter values λ̂.

Uncertainties estimated from log-likelihood variation indicate the expected level of agreement
(in Gaussian approximation) between our estimate λ̂ and the true parameter values λ.

Can we present measurement results in a way which gives us more precise information about
the possible fluctuations in the estimate λ̂?

Yes, but we need to define the problem differently... We should not consider probability of λ̂...
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Confidence intervals

Frequentist confidence intervals

Classical (frequentist) definition of the confidence interval refers directly to the probability
distribution of the experimental results, f (x;λ).

We do not try to make any prediction (nor guess) about the “probability” (degree of belief) of
given parameter value λ. This is the Bayesian concept we will discuss later...

In the frequentist approach we consider individually each λ value.
Given value of λ is allowed (on given confidence level, C.L.), if the actual outcome of our
experiment, xm, is within the corresponding probability interval for variable x
for this value of λ.

This definition clearly depends on the way we define probability intervals for x.
So this is rather a general concept, more assumptions are needed.
We always refer to probability distribution f (x;λ) for random variable x!
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Confidence intervals

Frequentist confidence intervals
As mentioned above, to define confidence interval for our parameter,
we need to define how the probability interval for our measurement is defined.
There are three “natural” choices: CL = 1 - α

We constrain the measurement from above, define upper limit xul : α≪ 1∫ xul

−∞
dx f (x ;λ) = CL or

∫ +∞

xul

dx f (x ;λ) = α

We constrain the measurement from below, define lower limit xll :∫ xll

−∞
dx f (x ;λ) = α or

∫ +∞

xll

dx f (x ;λ) = CL

We define central probability interval [x1, x2]: as presented for Gaussian pdf∫ x1

−∞
dx f (x ;λ) = α/2 and

∫ +∞

x2

dx f (x ;λ) = α/2
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Confidence intervals

Frequentist confidence intervals

General procedure

Possible experimental values x
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calculate limits of probability intervals
for x , x1(θ) and x2(θ), for different
values of θ

calculated intervals define the
“accepted region” in (θ, x)

confidence interval for θ is defined by
drawing line x = xm in the accepted
region

⇒ limit on θ for given xm, θ1(xm),
corresponds to limit on x for given θ:
xm = x1(θ1).

R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022), PDG web page
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Frequentist confidence intervals

Procedure 07 gauss interval.ipynb

Let us consider the 90% CL interval (or 95% CL limits) for Gaussian pdf: width fixed σ ≡ 1

f (x ;µ, σ) =
1

σ
√
2π

exp

(
−1

2

(x − µ)2

σ2

)
calculate limits of probability intervals for x :
x1(µ) and x2(µ), for different values of µ

calculated intervals define the “accepted region”
in the (µ, x) plane

confidence interval for µ is found by drawing line
x = xm in the accepted region

⇒ limit on µ for given xm, µ1(xm), corresponds to the
probability limit on x for given µ: xm = x1(µ1).
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Frequentist confidence intervals

Procedure 07 gauss interval2.ipynb

The procedure can be easily used also for Gauss with variable σ: CL = 90%

σ2(µ) = 1 + 0.1 · µ2

calculate limits of probability intervals for x :
x1(µ) and x2(µ), for different values of µ

calculated intervals define the “accepted region”
in the (µ, x) plane

confidence interval for µ is found by drawing line
x = xm in the accepted region

⇒ limit on µ for given xm, µ1(xm), corresponds to the
probability limit on x for given µ: xm = x1(µ1).
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Frequentist confidence intervals
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The procedure can be easily used also for Gauss with variable σ: CL = 90%
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x1(µ) and x2(µ), for different values of µ

calculated intervals define the “accepted region”
in the (µ, x) plane

confidence interval for µ is found by drawing line
x = xm in the accepted region

⇒ limit on µ for given xm, µ1(xm), corresponds to the
probability limit on x for given µ: xm = x1(µ1).

Naive estimate, just taking xm and σ(xm): [0.27,4.33]
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Frequentist confidence intervals

Procedure 07 gauss interval2 ul.ipynb

When considering one side (upper or lower) parameter limits (quite a common case) the
procedure can be simplified. For upper limit (95% CL): F - cumulative distribution function

for different values of µ, consider the probability of
the experimental result x < xm (consistent with the
measurement): P(x < xm;µ) = F (xm, µ)

scan parameter µ to find the value corresponding to:

P(x < xm;µul) = α

crossing of F (x , µ) = α curve with x = xm one⇒ For higher parameter values, µ′ > µul , probability of
reproducing experimental result:

P(x < xm;µ
′) < α

Check: xm = µul − 1.64 · σ(µul)
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Quark radius limits

Limit setting

The probability of obtaining a R2 Fit
q value

smaller than that obtained for the actual data

Prob(R2 Fit
q < R2 Data

q )

is studied as a function of R2 True
q

R2 True
q values corresponding to the probability

smaller than 5% are excluded at the 95% C.L.

Limits obtained for fixed SM parameters
are too strong by about 10%
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Frequentist confidence intervals

Procedure 07 poisson interval.ipynb

The procedure can be also adapted for the counting experiment, Poisson distribution:

P(n;µ) =
µn e−µ

n!
for n = 0, 1, 2, . . .

calculate probability intervals for n for different
values of µ

! As n is discrete random variable, we can not
guarantee exact “coverage”. The requirement is:

P(n1(µ) ≤ n ≤ n2(µ)) ≥ 1− α

calculated intervals define the “accepted region” in
the (µ, n) plane

confidence interval for µ is defined by drawing line
n = nm in the accepted region
(and taking maximal range)
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← µul = 11.8
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Frequentist confidence intervals

Results

For the case of Poisson variable, calculation of the upper limit for the expected number of
events µ, when observing nm events, can be reduced to solving the equation:

P(n ≤ nm;µul) =
nm∑
n=0

µn
ul
e−µul

n!
= α

For higher numbers of expected events µ′ > µul , probability that the repeated experiment will
result in the measurement consistent with actual observation

P(n ≤ nm;µ
′) < α

⇒ these values are excluded on the assumed confidence level (CL = 1− α)
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Frequentist confidence intervals

Results

Lower and upper (one-sided) limits
for the mean µ of a Poisson variable
given n observed events in the
absence of background, for
confidence levels of 90% and 95%.

R.L. Workman et al. (Particle Data Group),
Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
PDG web page
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Statistical analysis of experimental data

Parameter Inference (2)

1 Frequentist confidence intervals

2 Bayesian limits

3 Unified approach

4 Homework
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Bayes’ Theorem

Bayesian approach
Bayes theorem can be used to generalize the concept of probability.
In particular, one can consider “probability” of given hypothesis H
(theoretical model or model parameter, eg. Hubble constant)
when taking into known outcome D (data) of the experiment

P(H|D) =
P(D|H)

P(D)
· P(H)

There are two problems with this approach:

H can not be considered an event, sampling space can not be defined
(no experiment to repeat)

we need to make a subjective assumption about the “prior” P(H) describing our initial
belief in hypothesis H

For these reasons I rather use term “degree of belief” for the result of the Bayesian procedure
applied to non random events
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Bayesian limits

Procedure
Bayes theorem can be applied to the case of counting experiment:

P(µ; nm) =
P(nm;µ)∫

dµ′ P(nm;µ′)
· P(µ)

Integral in the denominator is equal to 1 (Gamma distribution).
Assuming flat “prior distribution” for µ (no earlier constraints) we get:

P(µ; n) =
µn e−µ

n!

Upper limit on the expected number of events can be then calculated as:∫ µul

0
dµ P(µ; nm) = 1− α

Surprisingly, the numerical result is the same as for the Frequentist approach...
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Bayesian limits

Numerical check 07 poisson bayes.ipynb

Comparison of 95% C.L. upper limits from
Frequentist approach (green) with corresponding
limits obtained from Bayesian approach (blue).
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Bayesian limits

Procedure
Bayes theorem can be applied to the Gaussian measurement as well:

P(µ; xm) =
G (xm;µ, σ)∫

dµ′ G (xm;µ′, σ)
· P(µ)

Integral in the denominator is equal to 1 only if σ is fixed (!).
With flat “prior distribution” for µ (no earlier constraints) and fixed σ:

P(µ; x) = G (x ;µ, σ)

Upper limit on the expected number of events can be then calculated as:∫ µul

0
dµ P(µ; xm) = 1− α

and the numerical result is (again) the same as for Frequentist approach...
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Bayesian limits

General comments

For the two simplest cases, which one could consider, limits obtained from the Bayesian
approach are exactly the same as the Frequentist limits.

However, this is not the case in the general!
Bayesian limits do not have well defined “confidence levels”,
probability of experimental result being consistent with considered measurement is not defined!

For complicated measurements (eg. in High Energy Physics) Bayesian approach is much easier
to use, as it does not require generation of multiple experiment (MC samples assuming
different parameter values) - only the measured distribution is compared with different models.

Resulting limits are only approximate, they should not be labeled with C.L.

Bayesian limits tend to correspond to higher C.L. than the assumed one...

A.F.Żarnecki Statictical analysis 07 November 14, 2024 24 / 43



Bayesian limits

General comments

For the two simplest cases, which one could consider, limits obtained from the Bayesian
approach are exactly the same as the Frequentist limits.

However, this is not the case in the general!
Bayesian limits do not have well defined “confidence levels”,
probability of experimental result being consistent with considered measurement is not defined!

For complicated measurements (eg. in High Energy Physics) Bayesian approach is much easier
to use, as it does not require generation of multiple experiment (MC samples assuming
different parameter values) - only the measured distribution is compared with different models.

Resulting limits are only approximate, they should not be labeled with C.L.

Bayesian limits tend to correspond to higher C.L. than the assumed one...
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Bayesian limits

Comparison 07 gauss bayes.ipynb

Comparison of 95% C.L. upper limits from
Frequentist approach (green) with corresponding
limits obtained from Bayesian approach (blue)
for the example of Gaussian distribution with
variable sigma:

σ2(µ) = 1 + 0.1 · µ2

“Coverage” (corresponding measurement interval
probability) for the Bayesian limit is higher than
the assumed CL !
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Bayesian limits

Comparison 07 poisson bayes2.ipynb

Comparison of 95% C.L. upper limits from
Frequentist approach (green) with corresponding
limits obtained from Bayesian approach (blue)
for the example of Poisson distribution with
background (µbg = 3).
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Bayesian limits

General comments

One should also stress again that assumption made on prior distribution of the parameter is
always arbitrary. Common approach is to use “flat prior”, but extracted limits are then
sensitive to the parameter choice.

Example: we want to set limits on the leptoquark production, based on the number of
observed events. Signal expectation can be written as:

µsig = L · A · σLQ

where σLQ is the signal cross section, or as

µsig = L · A · k λ2
LQ

where λLQ is the leptoquark coupling. We can use Bayesian approach with flat prior to set
limits on σLQ and λLQ , but they will not be consistent !!!

A.F.Żarnecki Statictical analysis 07 November 14, 2024 27 / 43

L - integrated luminosity

A - acceptance



Bayesian limits

General comments

There is also arbitrariness in defining limits in multi-parameter space.

Consider leptoquark limits again.

ZEUS collaboration used Bayesian approach to set
limits on coupling λ as a function of LQ mass MLQ .
Assuming uniform λ2 distribution.
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ZEUS Collaboration, arXiv:hep-ex/0304008
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There is also arbitrariness in defining limits in multi-parameter space.

Consider leptoquark limits again.

ZEUS collaboration used Bayesian approach to set
limits on coupling λ as a function of LQ mass MLQ .
Assuming uniform λ2 distribution.

But one could also consider setting limit on MLQ as a

function of λ, or limits on effective coupling η =
(
λ
M

)2
Limit curves in (M, λ) plane would be different!

Parameter choice is not relevant in frequentist approach!
Each point in parameter space is tested by itself...
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A.F.Żarnecki Statictical analysis 07 November 14, 2024 28 / 43

https://arxiv.org/abs/hep-ex/0304008


Bayesian limits

General comments

Limits presented in the ZEUS leptoquark publication were obtained with Bayesian approach.
We did not use “confidence level” term in our paper...

Confidence level of the obtained limits was verified for MLQ ≫
√
s case:
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Statistical analysis of experimental data
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1 Frequentist confidence intervals

2 Bayesian limits

3 Unified approach

4 Homework
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Unified approach

Problems
For counting experiment with background, results of both Frequentist and Bayesian approach
are not very useful, when no events are observed.

In the Frequentist approach, all values of µ > 0
can be excluded, if background level is high and
number of events observed is significantly lower
than expected.

Probability of such background fluctuation is
small, but finite.

We should not exclude small signals just because
background has fluctuated...
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Unified approach

Problems
For counting experiment with background, results of both Frequentist and Bayesian approach
are not very useful, when no events are observed.

In the Bayesian approach, limits for nm = 0 are
almost the same as without background, while we
would expect them to be stronger.

These limits correspond to much higher C.L. than
the one assumed

As expected, the two approaches agree for
nm ≫ µbg
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Unified approach

Problems 07 gauss bayes2.ipynb

Similar problem is observed for our example Gaussian distribution, if we assume that true
mean is constrained to positive values, µ > 0.

If measured value xm is below −1.64 then
probability of µ = 0 scenario is below 5%.

⇒ all values of µ are excluded
in Frequentist approach

But we know this has to be fluctuation...
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Unified approach

Problems 07 gauss bayes2.ipynb

Similar problem is observed for our example Gaussian distribution, if we assume that true
mean is constrained to positive values, µ > 0.

Bayesian limits, on the other hand, seem to be too
week again.

Also limits for small positive xm are significantly
weaker...
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95% C.L.
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Unified approach

Problems G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Another problem concerns the way we interpret the results of the Gaussian measurement,
if true mean is constrained to positive values, µ > 0.
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Following procedure could be applied:

If measured value xm is below 0 then we assume it is
fluctuation
⇒ we quote limit for 0.

If measured value is below 3σ
⇒ we quote 90% CL upper limit

If measured value is above 3σ
⇒ we quote 90% CL interval

This procedure seems “natural” but results in significant
undercoverage! It is only 85% for 1.28 < µ < 4.28
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Problems G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Another problem concerns the way we interpret the results of the Gaussian measurement,
if true mean is constrained to positive values, µ > 0.

0

1

2

3

4

5

6

-2 -1 0 1 2 3 4
Measured Mean x

M
ea

n 
µ

Following procedure could be applied:

If measured value xm is below 0 then we assume it is
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If measured value is below 3σ
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This procedure seems “natural” but results in significant
undercoverage! It is only 85% for 1.28 < µ < 4.28
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Unified approach

Solution

Solution to these problem was proposed in
G.J.Feldman and R.D.Cousins,
A Unified Approach to the Classical Statistical Analysis of Small Signals,
Phys.Rev.D57:3873-3889,1998; arXiv:physics/9711021

New procedure gives proper confidence interval for all possible cases.

We should not use central probability intervals to define limits!

Feldman and Cousin concluded that we should rather select our interval based on the
likelihood of given hypothesis for the considered result.

“Best” probability interval for given hypothesis should be defined as the one covering
experimental results most consistent with it (with highest likelihood).

Such definition also gives smooth transition between “limit setting” and “interval setting”...
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Unified approach

Solution

We still want to start from constructing the probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x (maximum likelihood).

How consistent is the considered parameter value µ with our measurement (described by
µbest) can be described by likelihood ratio:

R(x ;µ) =
P(x ;µ)

P(x ;µbest(x))
≤ 1
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Let µbest(x) be the parameter value best describing measurement x (maximum likelihood).

How consistent is the considered parameter value µ with our measurement (described by
µbest) can be described by likelihood ratio:

R(x ;µ) =
P(x ;µ)

P(x ;µbest(x))
≤ 1

We can now create the probability interval for x , [x1, x2], by selecting values with highest R,
up to given CL:∫ x2

x1

dx P(x ;µ) = 1− α and ∀x /∈[x1,x2] R(x) < R(x1) = R(x2)
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Unified approach

Solution

We still want to start from constructing the probability intervals in random variable x (or n)
for given hypothesis µ.

Let µbest(x) be the parameter value best describing measurement x (maximum likelihood).

How consistent is the considered parameter value µ with our measurement (described by
µbest) can be described by likelihood ratio:

R(n;µ) =
P(n;µ)

P(n;µbest(x))
≤ 1

We can now create the probability interval for n, [n1, n2], by selecting values with highest R,
up to given CL:

n2∑
n=n1

P(n;µ) ≥ 1− α and ∀n/∈[n1,n2] R(n) < R(n1) ∩ R(n) < R(n2)
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Unified approach

Example G.J.Feldman, R.D.Cousins, arXiv:physics/9711021

Calculations of 90% CL interval for µ = 0.5, for counting experiment (Poisson variable)
in the presence of known mean background µbg = 3.0
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Statistical analysis of experimental data

Parameter Inference (2)

1 Frequentist confidence intervals

2 Bayesian limits

3 Unified approach

4 Homework
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Homework

Homework Solutions to be uploaded by November 27.

Calorimeter response to particle of given energy E [GeV] can be described by Gamma
distribution (see lecture 3) with mean and variance given by:

x̄ = E + B

σ2 = 0.25 GeV · (E + B)

where B is a known background level, B = 1 GeV.

Calculate the 95% CL frequentist upper limit for the particle energy E ,
if the measured value xm = 3GeV.
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