
Statistical analysis of experimental data
Least-squares method

Aleksander Filip Żarnecki
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Maximum Likelihood Method

Maximum Likelihood Method

The product:

L =
N∏
j=1

f (x(j);λ)

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set λ we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function

ℓ = ln L =
N∑
j=1

ln f (x(j);λ)

we can look for maximum value of ℓ or minimum of −2 ℓ = −2 ln L
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Maximum Likelihood Method

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

λ = (λ1 . . . λp) L =
N∏
j=1

f (x(j);λ) ℓ =
N∑
j=1

ln f (x(j);λ)

Best estimate of λ, for given set of experimental results x(j), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:

∂ℓ

∂λi

∣∣∣∣
i=1...p

= 0

The Likelihood Principle G. Bohm and G. Zech

Given a p.d.f. f (x;λ) containing an unknown parameters of interest λ and observations x(j),
all information relevant for the estimation of the parameters λ is contained in the likelihood
function L(λ; x) =

∏
f (x(j);λ).
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Maximum Likelihood Method

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates λ̂ are
given by the measured variable values x.

Unlike parameters λ, parameter estimates λ̂ are random variables (functions of x) and so we
can consider covariance matrix for λ̂:

Cx = Cλ̂ =

(
− ∂2ℓ

∂λi ∂λj

)−1

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.

This definition works for arbitrary p.d.f. shape, also for multiple parametersA.F.Żarnecki Statictical analysis 08 November 21, 2024 5 / 47
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Confidence intervals

Normal distribution

Meaning of σ is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value within ±N σ:

1− α
± 1 σ ⇒ 68.27 %
± 2 σ ⇒ 95.45 %
± 3 σ ⇒ 99.73 %
± 4 σ ⇒ 99.9937 %
± 5 σ ⇒ 99.999943 %

−3 −2 −1 0 1 2 3

f (x; µ,σ)

α /2α /2

(x−µ) /σ

1−α

There is a non-zero chance for deviation grater than 5σ, but it is extremely small
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χ2 distribution

Maximum Likelihood Method see lectures 05 and 06

Let us consider N independent measurements of variable Y . Assuming measurement
fluctuations are described by Gaussian pdf, the likelihood function is:

L =
N∏
i=1

G (yi ;µi , σi ) =
N∏
i=1

1

σi
√
2π

exp

(
−1

2

(yi − µi )
2

σ2
i

)
Log-likelihood: assuming σi are known

ℓ = −1

2

∑ (yi − µi )
2

σ2
i

+ const

We can also define

χ2 = −2 ℓ = −2 ln L =
N∑
i=1

(yi − µi )
2

σ2
i

Maximum of (log-)likelihood function corresponds to minimum of χ2 (for Gaussian pdf!)
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χ2 distribution

Problem

χ2 calculated for a set of N measurements is a random varible.
It is a function of random variables, results of the measurement
its value changes when we take another set of N measurements.

Can we predict what its probability distribution is?

We will address this problem in two different approaches:

simple one, based on intuitive case of N = 2, extrapolating to other N

more formal one, based on momentum generating functions
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χ2 distribution

N=2

Let us introduce “shift” variables:

zi =
yi − µi

σi

which are (by construction) described by Gaussian pdf with µ = 0, σ = 1.

For N = 2 independent variables we can write:

f (z1, z2) =
1

2π
exp

(
−1

2
(z21 + z22 )

)
and then change variables to polar coordinates see lecture 04

f (rz , ϕz) =
1

2π
rz exp

(
−1

2
r2z

)
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χ2 distribution

N=2

Integrating over ϕz and changing variable to r2z

f (r2z ) =
1

2
exp

(
−1

2
r2z

)
Distribution is exponential, corresponds to decay time distribution for τ = 2...

Extrapolation to even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma
distribution with k = n = N/2, λ = 1/τ = 1/2 lecture 03
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A.F.Żarnecki Statictical analysis 08 November 21, 2024 11 / 47



χ2 distribution

N=2

Integrating over ϕz and changing variable to r2z

f (χ2) =
1
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exp

(
−1
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)
Distribution is exponential, corresponds to decay time distribution for τ = 2...

Extrapolation to even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma
distribution with k = n = N/2, λ = 1/τ = 1/2 lecture 03

f (χ2) =
1

Γ(N2 )

(
1

2

)N
2

(χ2)
N
2
−1 e−χ2/2

The formula (as one can expect) works also for odd N...
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χ2 distribution

Moment generating function Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z2 for
single measurement (N = 1):

M1(t) = E(etu) =

∫ +∞

−∞
dz f (z) etz

2

=
1√
2π

∫ +∞

−∞
dz e−z2( 1

2
−t)

z ′2 = z2(1− 2t) =
1√
2π

∫ +∞

−∞

dz ′√
1− 2t

e−
1
2
z ′2

=
1√

1− 2t
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A.F.Żarnecki Statictical analysis 08 November 21, 2024 12 / 47



χ2 distribution

Arbitrary N Bonamente

Considered random variables zi are independent, and χ2 =
∑

z2i . Moment generating function
for χ2 distribution is thus given by:

MN(t) =
N∏
i=1

M1(t) =

(
1

1− 2t

)N/2

We can compare it with the moment generating functions for Gamma pdf

MG (t) = E(etx) =

∫ +∞

0
dx

1

Γ(k)
xk−1 λk e−λx etx

=

=

(
1

1− t
λ

)k

A.F.Żarnecki Statictical analysis 08 November 21, 2024 13 / 47



χ2 distribution

Arbitrary N Bonamente

Considered random variables zi are independent, and χ2 =
∑

z2i . Moment generating function
for χ2 distribution is thus given by:

MN(t) =
N∏
i=1

M1(t) =

(
1

1− 2t

)N/2

We can compare it with the moment generating functions for Gamma pdf

MG (t) = E(etx) =

∫ +∞

0
dx

1

Γ(k)
xk−1 λk e−λx etx

=
λk

Γ(k)

∫ +∞

0
dx xk−1 e−x(λ−t)

=

(
1

1− t
λ

)k
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dx ′ x ′k−1

(λ− t)k
e−x ′

=

(
1

1− t
λ

)k
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χ2 distribution

χ2 distribution

We conclude that distribution of χ2 is described by Gamma pdf with:

k =
N

2
and λ =

1

2

Properties of the χ2 distribution (see lecture 03)

⟨χ2⟩ =
k

λ
= N

V(χ2) =
k

λ2
= 2N

√
V(χ2) = σχ2 =

√
2N

For small N, value of χ2 is a subject to large fluctuations...
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χ2 distribution
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Results of the Monte Carlo sample generation (compared with predictions)

Exponential distribution
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Results of the Monte Carlo sample generation (compared with predictions)

Almost gaussian, but asymmetry in tails remains even for large N...
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χ2 distribution

Reduced χ2

When discussing consistency of large data samples it is often convenient to use value of
“reduced χ2”:

χ2
red =

χ2

N

Distribution of χ2
red is again described by the Gamma pdf with

k =
N

2
and λ =

N

2

Properties of the distribution:

⟨χ2
red⟩ = 1 V(χ2

red) = σ2
χ2
red

=
2

N
χ2
red

∣∣∣
p=max

= 1− 2

N
(N > 2)
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χ2 distribution

Number of degrees of freedom

So far, we have only considered an ideal case, where both the expected values µ and
measurement uncertainties σ are known.

However, it is quite a common situation, when the expected value is extracted from the data:

χ̃2 =
N∑
i=1

(yi − ȳ)2

σ2

where we assume uniform uncertainties for simplicity.

What is the expected distribution for χ̃2 ?

Mean value corresponds to maximum likelihood ⇒ χ̃2 ≤ χ2
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χ2 distribution

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

s2 =
1

N − 1

∑
i

(yi − ȳ)2

so one can conclude:
⟨χ̃2⟩ = N − 1

but this does not give us full information about the distribution...

Simple variable transformation can be used: (Brandt)

x1 =
1√
2
(y1 − y2)

x2 =
1√
2 · 3

(y1 + y2 − y3)

. . .
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x1 =
1√
2
(y1 − y2)

x2 =
1√
2 · 3

(y1 + y2 − y3)

. . .

xk =
1√

k(k + 1)
(y1 + . . .+ yk − yk+1) k = 1 . . .N − 1

xN =
√
N · ȳ

One can verify that this is an orthogonal transformation...
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χ2 distribution

Number of degrees of freedom

If yi are independent random variables with Gaussian pdf, so are xi . Also:

N∑
i=1

x2i =
N∑
i=1

y2i

We can now rewrite the formula for χ̃2 in the new basis:

σ2 · χ̃2 =
N∑
i=1

(yi − ȳ)2 =
N∑
i=1

y2i − 2ȳ
N∑
i=1

yi + Nȳ2

=
N∑
i=1

y2i − Nȳ2 =
N∑
i=1

x2i − x2N =
N−1∑
i=1

x2i

⇒ distribution of χ̃2 corresponds to that of χ2 for Ndf = N − 1 variables...
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Hypothesis Testing

Data consistency test

Value of χ2 (or χ2
red) can be used to verify the consistency of the given data set y

(with uncertainties σ) with the model predictions given by µ

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or
check the consistency of the experimental procedure...

If the model does not describe the data, higher χ2 values are expected.

How to quantify the level of agreement?

We can calculate the probability of obtaining given value of χ2 or lower:

P(χ2) =

∫ χ2

0
dχ2′ f (χ2′)

given by the cumulative probability distribution. 1−P(χ2) is sometimes referred to as p-value
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Hypothesis Testing

Data consistency test

Plot of p-values
as a function of χ2

for different Ndf
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Hypothesis Testing

Critical χ2

The other approach is to define, for given probability CL (confidence level) the critical value of
χ2, corresponding the the frequentist upper limit:∫ χ2

crit

0
dχ2 f (χ2) = CL

∫ +∞

χ2
crit

dχ2 f (χ2) = 1− CL = α

If the χ2 value obtained in the actual measurement is higher than the selected χ2
crit , then we

should reject the hypothesis of data consistency with the model (can still be due to the data,
not the wrong model).

Very low P values, P(χ2) ≪ 1, are also not expected (not likely)!
If χ2 ≪ N (except for very small N), this usually indicates a problem:

overestimated uncertainties of measurements (or correlations not properly included)

hidden correlations between measurements (which we treat as independent variables)
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Hypothesis Testing

Critical χ2

Table of critical χ2 values (Brand)
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Hypothesis Testing

Critical χ2 08 critical.ipynb

Plot of critical values
for reduced χ2

p=0.5 shows the median
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Hypothesis Testing

Critical χ2

Plot of critical values
for reduced χ2

(indicated is p = 1− P)
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Hypothesis Testing

Student’s t Distribution

We can verify consistency of the series of measurements x with the true value µ by looking at
the shift parameter for the mean

z =
x̄ − µ

σx̄

where mean value x̄ is the best estimate of µ assuming Gaussian pdf.

But this works only, if we know the uncertainty, σx̄ = σ/
√
N.

We need to know measurement uncertainties to calculate χ2 !...

If the measurement uncertainties are unknown, or not reliable, we can estimate the variance of
the sample from the data itself (lecture 04)

ŝ2 =
1

N − 1

∑
i

(xi − x̄)2

ŝ2 distribution corresponds to χ2 distribution for N − 1 degrees of freedom

A.F.Żarnecki Statictical analysis 08 November 21, 2024 27 / 47



Hypothesis Testing

Student’s t Distribution

We can verify consistency of the series of measurements x with the true value µ by looking at
the shift parameter for the mean

z =
x̄ − µ

σx̄

where mean value x̄ is the best estimate of µ assuming Gaussian pdf.

But this works only, if we know the uncertainty, σx̄ = σ/
√
N.

We need to know measurement uncertainties to calculate χ2 !...

If the measurement uncertainties are unknown, or not reliable, we can estimate the variance of
the sample from the data itself (lecture 04)
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Hypothesis Testing

Student’s t Distribution

Consistency of our measurements x with the true value µ can be now described by

t =
x̄ − µ

ŝ/
√
N

but the distribution of t is no longer Gaussian (due to ŝ being a random variable as well).

It can still be calculated analytically:

f (t; n) =
1√
n π

Γ(n+1
2 )

Γ(n2 )

(
1 +

t2

n

)− n+1
2

where n is the number of degrees of freedom, n = N − 1.
Distribution is symmetric and has a mean of zero, but larger tails than the Gaussian
distribution, for small N in particular.
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
for different numbers of
measurements

Ndf = N − 1 = 1
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
for different numbers of
measurements

Ndf = N − 1 = 5
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
for different numbers of
measurements

Ndf = N − 1 = 7
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
for different numbers of
measurements

Ndf = N − 1 = 7

tails are clearly non-Gaussian...
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Hypothesis Testing
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
compared with Gaussian
distribution

Probability of large fluctuations
still significantly enhanced!
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Hypothesis Testing

Student’s t Distribution 08 t-dist.ipynb

Shape of the t distribution
compared with Gaussian
distribution

Converges to the Gaussian
distribution for large N
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Hypothesis Testing

Student’s t Distribution (Brandt)

“Critical values” of t for small
numbers of degrees of freedom f
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Hypothesis Testing

Student’s t Distribution 08 t-limit.ipynb

Plot of critical values for t

Large deviations much more
probable for small N
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Linear Regression

General case

We introduced χ2 in a very general form:

χ2 =
N∑
i=1

(yi − µi )
2

σ2
i

where different µi and σi are possible for each of N measurement yi

It is quite often the case that values of µi depend on some controlled variables xi and a
smaller set of model parameters:

µi = µ(xi ; a)

we can then use the least-squares method to extract the best estimates of parameters a from
the collected set of data points (xi , yi )

We can look for minimum of χ2 using different numerical algorithms...
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Linear Regression

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

µ(x ; a) =
M∑
k=1

ak fk(x)

where fk(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:

fk(x) = xk ⇒ µ(x ; a) =
M∑
k=1

ak xk−1

but any set of functions can be used, if they are not linearly dependent.
Set of functions ortogonal for a given set of points xi should work best...
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Linear Regression

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements yi .

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) χ2 minimum (⇒ maximum of log-likelihood)

To look for χ2 maximum, we consider partial derivatives:

∂χ2

∂al
=

∂

∂al

N∑
i=1

(
yi −

∑M
k=1 ak fk(xi )

σi

)2

= 0

= −2
N∑
i=1

(
yi −

∑M
k=1 ak fk(xi )

σ2
i

)
fl(xi )
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Linear Regression

Parameter fit Bonamente

We obtain a set of M equations for M parameters ai :

N∑
i=1

fl(xi )

σ2
i

(
yi −

M∑
k=1

ak fk(xi )

)
= 0 l = 1 . . .M

which can be rewritten as:
M∑
k=1

(
N∑
i=1

fl(xi ) fk(xi )

σ2
i

)
ak =

N∑
i=1

fl(xi ) yi
σ2
i

or in the matrix form: A · a = b

where Alk =
N∑
i=1

fl(xi ) fk(xi )

σ2
i

and bl =
N∑
i=1

fl(xi ) yi
σ2
i
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Linear Regression

Parameter fit Bonamente

We obtain a set of M equations for M parameters ai :

N∑
i=1

fl(xi )

σ2
i

(
yi −

M∑
k=1

ak fk(xi )

)
= 0 l = 1 . . .M

which can be rewritten as:
M∑
k=1

(
N∑
i=1

fl(xi ) fk(xi )

σ2
i

)
ak =

N∑
i=1

fl(xi ) yi
σ2
i

or in the matrix form: A · a = b

where Alk =
N∑
i=1

fl(xi ) fk(xi )

σ2
i

and bl =
N∑
i=1

fl(xi ) yi
σ2
i
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Linear Regression

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A

a = A−1 · b

This also gives us the estimate of parameter covariance matrix:

Ca =

(
− ∂2ℓ

∂al ∂ak

)−1

=

(
1

2

∂2χ2

∂al ∂ak

)−1

= A−1

One can write

Ca =

(
N∑
i=1

fl(xi ) fk(xi )

σ2
i

)−1

Expected uncertainties of the extracted parameter values depend on the choice of
measurement points xi but, surprisingly, do not depend on the actual results yi

⇒ very useful when planning the experiment...
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

example model ⇒

y(x) =
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 2
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

Probably optimal choice

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 3
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

“Overtraining ?”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 4
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

“Overtraining ?”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 5
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Linear Regression

Linear fit example 08 fit1.ipynb

Fitting Fourier series to
example data set

“Overtraining ?”

y(x) = a0 +
M∑
n=1

a2n−1 sin(nx) + a2n cos(nx) M = 6
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Linear Regression

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. When should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained χ2

Adding new parameter results in only moderate χ2 decrease, O(1)

Parameters become highly correlated

Values and errors of the individual parameters increase
differences of large contributions

Additional parameters are consistent with zero

Fit starts to follow fluctuations of the measurement results
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Linear Regression

Best fit choice?

Example of fit with too high polynomial order
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Linear Regression

Best fit choice?

Example of fit with proper polynomial order
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Linear Regression

Best fit choice?

Example of fit with

We need to understand what we measure, what to expect!
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Linear Regression

Learning on errors

When “wrong” set of
functions (highly
correlated) is selected...

y(x) = a0 + a1 sin(x) + a2 cos(x)
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Linear Regression

Learning on errors

When “wrong” set of
functions (highly
correlated) is selected...

Poor numerical precision
due to high correlations
between parameters.

y(x) = a0 +
M∑
n=1

a2n−1 sin
n(x) + a2n cos

n(x) M = 4
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Linear Regression

Learning on errors

When “wrong” set of
functions (highly
correlated) is selected...

Poor numerical precision
due to high correlations
between parameters.

sin2(x) + cos2(x) = 1

y(x) = a0 +
M∑
n=1

a2n−1 sin
n(x) + a2n cos

n(x) M = 5
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Linear Regression

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to k , l = 0 . . .M
(for polynomial fit of order M, M + 1 parameters).

Al k =
N∑
i=1

x
(l+k)
i

σ2
i

and bl =
N∑
i=1

x li yi
σ2
i

For uniform uncertainties it is then:

A =
1

σ2

N∑
i=1


1 xi . . . xMi

xi x2i . . . xM+1
i

...
...

xMi xM+1
i . . . x2Mi

 b =
1

σ2

N∑
i=1


yi

yi xi

...

yi x
M
i


quite simple to implement...
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Linear Regression

Uncertainty estimate

The χ2 value at the minimum can be then calculated as:

χ̃2 = (y − µ(x; a))⊺ A (y − µ(x; a))

Its distribution should correspond to the χ2 distribution for Ndf = N −M

If σ is the same for all measurements, the extracted parameter values do not dependent on it!
We can use the calculated value of χ̃2 to validate the model (test model hypothesis), but also
to “correct” our uncertainties, if we consider them unreliable (or they are unknown).
Resulting variance estimate:

σ̃2 = σ2 · χ̃2

N −M

This is useful in particular when χ̃2 ≪ Ndf (overestimated σ)
For χ̃2 ≫ Ndf we need to consider the possibility that our model is wrong...
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A.F.Żarnecki Statictical analysis 08 November 21, 2024 44 / 47



Linear Regression

Uncertainty estimate

The χ2 value at the minimum can be then calculated as:

χ̃2 = (y − µ(x; a))⊺ A (y − µ(x; a))

Its distribution should correspond to the χ2 distribution for Ndf = N −M

If σ is the same for all measurements, the extracted parameter values do not dependent on it!
We can use the calculated value of χ̃2 to validate the model (test model hypothesis), but also
to “correct” our uncertainties, if we consider them unreliable (or they are unknown).
Resulting variance estimate:

σ̃2 = σ2 · χ̃2

N −M

This is useful in particular when χ̃2 ≪ Ndf (overestimated σ)
For χ̃2 ≫ Ndf we need to consider the possibility that our model is wrong...
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Linear Regression

Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

µ(x , z ; a) =
M∑
k=0

M∑
l=0

akl x
k z l

All we need to do is to order the pairs of indexes, so that vector a is properly defined.
Example for M = 1 (2-D plane): a = (a00, a10, a01)

A =
1

σ2

N∑
i=1


1 x z

x x2 x z

z x z z2

 b =
1

σ2

N∑
i=1


y

y x

y z


where measurement indexes i = 1 . . .N were skipped for variables xi , yi and zi
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Statistical analysis of experimental data

Least-squares method

1 χ2 distribution

2 Hypothesis Testing

3 Linear Regression

4 Homework
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Homework

Homework Solutions to be uploaded by December 4.

Download the set of data from the lecture home page.
Text file with three columns: xi , yi , σyi

Use linear regression method to fit
polynomial dependence to the data.

Calculate p-value for the 3rd order
polynomial fit.

Find the order of polynomial, which is
adequate for the description of the data
and give arguments for your choice.
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