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Statistical analysis of experimental data > .

Least-squares method

© 2 distribution
© Hypothesis Testing
e Linear Regression

@ Homework
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Maximum Likelihood Method >

Maximum Likelihood Method

L= 9N

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set A we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL =) Inf(xU;x)
j=1

we can look for maximum value of £ or minimum of —2¢ = —2InL
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Maximum Likelihood Method >

Multiple parameter estimate

Likelihood function (and log-likelihood) can depend on multiple parameters:

N N
A=(A1... ) L=T]fD:0)  £=> Inf(x");x)
j=1

j=1
Best estimate of A, for given set of experimental results xU), corresponds to maximum of the
likelihood function, which can be found by solving a system of equations:
o )
aA" i=1l..p
The Likelihood Principle G. Bohm and G. Zech

=0

Given a p.d.f. f(x; A) containing an unknown parameters of interest A and observations x),
all information relevant for the estimation of the parameters A is contained in the likelihood
function L(X;x) = [T £(x); A).

A.F.Zarnecki Statictical analysis 08 November 21, 2024


https://bib-pubdb1.desy.de/record/389738

A
F

'\

Fon

\,
Y
W

Maximum Likelihood Method -

Parameter covariance matrix

For the considered case of multivariate normal distribution, best parameter estimates X are
given by the measured variable values x.

Unlike parameters X, parameter estimates A are random variables (functions of x) and so we

~

can consider covariance matrix for X:

20 \ 7
b=0G0 = (_8)\,- aAj)

Knowing the likelihood function, we can not only estimate parameter values, but also extract
uncertainties and correlations of these estimates!

Recipe for a parameter uncertainty G. Bohm and G. Zech

Standard error intervals of the extracted parameter are defined by the decrease of the
log-likelihood function by 0.5 for one, by 2 for two and by 4.5 for three standard deviations.
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Confidence intervals ’im

Normal distribution

Meaning of o is well defined for Gaussian distribution.

Probability for the experimental result to be consistent with the true value within + N o:

f(x; 1,0)
11—«
+10 = 68.27 %
+20 = 9545 %
+30 — 99.73 % o
+40 = 99.9937 %
+50 = 99.999943 % o/2 o/2
! ! ! !
-3 -2 - 0 1 2 3
(x—W/oc

There is a non-zero chance for deviation grater than 50, but it is extremely small
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Statistical analysis of experimental data > .

Least-squares method

@ 2 distribution
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x? distribution

Maximum Likelihood Method see lectures 05 and 06

Let us consider N independent measurements of variable Y. Assuming measurement
fluctuations are described by Gaussian pdf, the likelihood function is:

L = |N| G(yi; i 07) = |N| L exp <_1(y,- _Mi)2>
- I 1B ! - 2
Pl o2 2 o

i=1

Log-likelihood: assuming o; are known

1 (vi — wi)?
{ = _EZT + const

i
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x? distribution -

Maximum Likelihood Method see lectures 05 and 06

Let us consider N independent measurements of variable Y. Assuming measurement
fluctuations are described by Gaussian pdf, the likelihood function is:

L = |N| G(yi; i 07) = |N| L exp <_1(y,- _Mi)2>
- I 1B ! - 2
paley oV 2T 2 o

i=1

Log-likelihood: assuming o; are known

1 (vi — wi)?
! = _E E T + const
We can also define
> Y i — i)
X n >

i=1 i

Maximum of (log-)likelihood function corresponds to minimum of x? (for Gaussian pdf!)
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X2 distribution o3

Problem

x? calculated for a set of N measurements is a random varible.
It is a function of random variables, results of the measurement
its value changes when we take another set of N measurements.

Can we predict what its probability distribution is?
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X2 distribution o3
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\E \ '

Problem

x? calculated for a set of N measurements is a random varible.
It is a function of random variables, results of the measurement
its value changes when we take another set of N measurements.

Can we predict what its probability distribution is?

We will address this problem in two different approaches:

@ simple one, based on intuitive case of N = 2, extrapolating to other N

@ more formal one, based on momentum generating functions

A.F.Zarnecki
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x? distribution -

N=2

Let us introduce ‘“shift” variables:
Yi — HKi
o

zZi =

which are (by construction) described by Gaussian pdf with =0, o = 1.
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x? distribution -

N=2

Let us introduce ‘“shift” variables:
Yi — HKi
o

zZi =

which are (by construction) described by Gaussian pdf with =0, o = 1.

For N = 2 independent variables we can write:

1 1
f(z1,2) = > exp <—2(212+222)>
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x? distribution P

N=2

Let us introduce ‘“shift” variables:
Yi — HKi
o

zZi =

which are (by construction) described by Gaussian pdf with =0, o = 1.

For N = 2 independent variables we can write:

1 1
f(z1,2) = > exp <—2(212+222)>

and then change variables to polar coordinates see lecture 04

1 1
f(rz,02) = o ry exp <—2rz2>
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x? distribution -

N=2

Integrating over ¢, and changing variable to r?

1 1
f(fz2) = 2exp<—2r22>

Distribution is exponential, corresponds to decay time distribution for 7 = 2...
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x? distribution -

N=2

Integrating over ¢, and changing variable to r? = 2

1 1
f(x*) = 5 P <—2X2>

Distribution is exponential, corresponds to decay time distribution for 7 = 2...
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x? distribution e

N=2

Integrating over ¢, and changing variable to r?
1 1
f 2 — e T2
(x%) 5 XP< S X >
Distribution is exponential, corresponds to decay time distribution for 7 = 2...

Extrapolation to even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma
distribution with k = n=N/2, A\=1/7 =1/2 lecture 03
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x? distribution e

N=2
Integrating over ¢, and changing variable to r?
1 1
f 2 I T2
(x%) 5 exr>< S X >
Distribution is exponential, corresponds to decay time distribution for 7 = 2...

Extrapolation to even N case

Sum of n = N/2 numbers from exponential distribution, is distributed according to Gamma
distribution with k = n=N/2, A\=1/7 =1/2 lecture 03

F() = I_(1@/) (;)2 (Xz)%fl o X?/2

The formula (as one can expect) works also for odd N...
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X2 distribution B im

Moment generating function Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z? for
single measurement (N = 1):
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x? distribution -

Moment generating function Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z? for

single measurement (N = 1):
+oo

Mi(t) = E(e) — / dz (z) e

— 00
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x? distribution -

Moment generating function Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z? for
single measurement (N = 1):

+0c0 )
Mi(t) = E(e) — / dz £(2) e

— 00

1 oo 21
= — dz e % (31
V 27 /—voo
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x? distribution P

Moment generating function

Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z? for

single measurement (N = 1):

A.F.Zarnecki
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x? distribution P

Moment generating function Bonamente

One can consider moment generating function (see lecture 04) for distribution of u = z? for
single measurement (N = 1):

+0c0 )
Mi(t) = E(e) — / dz £(2) e

— 00

1 oo gz 10
o
V1-=2t
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x? distribution P

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N N/2
) = T - ()
i=1
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+oo 1
MG(t) = E(etx) = /0 dx r(k)xk—l AK @™ Ax otx

X /+°dexk—1 o x(A—1)
(k) Jo
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+o0 1
MG(t) = E(etx) = / dx k=1 \k g=Ax gtx
0

10)

)\k 400 dX/ X/kfl ,

! _ )\ o t — / —X
X =xA ) [y ok ©
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x? distribution -

Arbitrary N Bonamente

Considered random variables z; are independent, and x? = 22,2 Moment generating function
for x? distribution is thus given by:

N 1 \N2
(e = T[meo - (%)

We can compare it with the moment generating functions for Gamma pdf

+o0 1
MG(t) = E(etx) = /0 dx r(k)Xk—l \K e Ax otx

K 00yl k=1 , 1 k
xX'=x(\—t) = / e X = <>
F(k)Jo (A=) - %

A.F.Zarnecki Statictical analysis 08 November 21, 2024



x? distribution -

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
kZE and Azi
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x? distribution -

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
k = E and )\ = 5
Properties of the x? distribution (see lecture 03)
k
2
= — = N
(X 3
k
V(Xz) = 2 = 2N
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x? distribution P

x? distribution

We conclude that distribution of x? is described by Gamma pdf with:

N 1
k = E and )\ = 5
Properties of the x? distribution (see lecture 03)
k
2
= — = N
(X 3
k
V(Xz) = 2 = 2N

V(x?) = 0. = V2N

For small N, value of x? is a subject to large fluctuations...

A.F.Zarnecki Statictical analysis 08 November 21, 2024



\,
\
\E \ '

X2 distribution o3

x? distribution 08_chi2.ipynb

Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 2
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Exponential distribution
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 2
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Results of the Monte Carlo sample generation (compared with predictions)
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x? distribution for N = 1
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Sharply peaked at zero, but with long tail

A.F.Zarnecki

10

Statictical analysis 08

November 21, 2024


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/08_Least-squares_method/08_chi2.ipynb

8 g
\E\'//

x? distribution 2

x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 1
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Sharply peaked at zero, but with long tail
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 3
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Very asymmetric, most events below average value...
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 4
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Very asymmetric, most events below average value...
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 5
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Very asymmetric, most events below average value...
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 6
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It is interesting to note that maximum position, X2, = N —2 (1)
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Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 8
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It is interesting to note that maximum position, X2, = N —2 (1)
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Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 10
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It is interesting to note that maximum position, X2, = N —2 (1)
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Results of the Monte Carlo sample generation (compared with predictions)
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x? distribution 08_chi2.ipynb
Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 20
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Results of the Monte Carlo sample generation (compared with predictions)

x? distribution for N = 25
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Results of the Monte Carlo sample generation (compared with predictions)
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Results of the Monte Carlo sample generation (compared with predictions)
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Results of the Monte Carlo sample generation (compared with predictions)
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Almost gaussian, but asymmetry in tails remains even for large N...
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x? distribution

Reduced y?

When discussing consistency of large data samples it is often convenient to use value of

“reduced y?": )

g =
red N

Distribution of Xfed is again described by the Gamma pdf with

N N
k:§ and )\25
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x? distribution -

Reduced y?

When discussing consistency of large data samples it is often convenient to use value of

“reduced y?": )

g =
red N

Distribution of Xfed is again described by the Gamma pdf with

N N
k = 5 and \ = 5
Properties of the distribution:
2 2
<Xged> =1 V(X%ed) = Ui%ed = N Xged p=max =1- N (N > 2)
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X2 distribution o3

Number of degrees of freedom

So far, we have only considered an ideal case, where both the expected values p and
measurement uncertainties o are known.

However, it is quite a common situation, when the expected value is extracted from the data:

where we assume uniform uncertainties for simplicity.
What is the expected distribution for {2 ?

Mean value corresponds to maximum likelihood =  §2 < x?
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x? distribution -

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

1
2 § L 5)2
S - N—]_ (yl y)

so one can conclude: ) '
(X = N-1

but this does not give us full information about the distribution...
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X2 distribution ’im

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is
1
2

— L o)2
s = N_-1 Z(y/ ¥)
so one can conclude: ) '
Xx) = N—-1
but this does not give us full information about the distribution...
Simple variable transformation can be used: (Brandt)
1
X1 = ﬁ()ﬁ — y2)
1
X2 = 27-3(}/1 +y2 — y3)

A.F.Zarnecki
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x? distribution P

Number of degrees of freedom

We already know (lecture 04) that unbiased variance estimate for N measurements is

1
2 § L 5)2
S - N—]_ (yl y)

so one can conclude: ) '
(X = N-1

but this does not give us full information about the distribution...

Simple variable transformation can be used: (Brandt)
1
Xk = ——n+...+ — k=1...N—-1
k PO 1)(yl Yk = Yk+1)
XN = \/N : )7

One can verify that this is an orthogonal transformation...
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X2 distribution o3

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
=1 i=1
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x? distribution o

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
i=1 i=1

We can now rewrite the formula for ¥2 in the new basis:

N

N N
o P = Y i =Y v -2 v+ NP
i=1 i=1

i=1

N
= ZyIZ - N}_/Z
i=1
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x? distribution -

Number of degrees of freedom

If y; are independent random variables with Gaussian pdf, so are x;. Also:

N N

2 2
E Xi = E Yi
=1 i=1

We can now rewrite the formula for ¥2 in the new basis:

N

N N
2 = D i) =D -2 yi+ NP
i=1 i=1 i=1
N—1

N N
2 =2 2 2 2
= DN =Y = Do
i=1 i=1 j

= distribution of ¥? corresponds to that of x? for Ngr = N — 1 variables...
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Statistical analysis of experimental data > .

Least-squares method

© Hypothesis Testing
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Hypothesis Testing SR

Data consistency test

Value of x? (or Xfed) can be used to verify the consistency of the given data set y
(with uncertainties o) with the model predictions given by p

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or
check the consistency of the experimental procedure...

If the model does not describe the data, higher x? values are expected.

How to quantify the level of agreement?
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Hypothesis Testing SR

Data consistency test

Value of x? (or Xfed) can be used to verify the consistency of the given data set y
(with uncertainties o) with the model predictions given by p

We can try to test the theoretical model, verify our estimates of measurement uncertainties, or
check the consistency of the experimental procedure...

If the model does not describe the data, higher x? values are expected.
How to quantify the level of agreement?

We can calculate the probability of obtaining given value of x? or lower:

2

P(x*) = /OX dx® f(x*)

given by the cumulative probability distribution. 1 — P(x?) is sometimes referred to as p-value
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Data consistency test

1.000
Plot of p-values '3 (PDG)
as a function of y? 0.500¢ ]
for different Nyr “ 0.200\ i
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Hypothesis Testing

Critical \?

The other approach is to define, for given probability CL (confidence level) the critical value of
x?, corresponding the the frequentist upper limit:

Xgrit +oo
/ dx? f(x?) = CL dx’ f(x?) = 1-CL = a
0

2
Xerit

A.F.Zarnecki
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Hypothesis Testing

Critical \?

The other approach is to define, for given probability CL (confidence level) the critical value of

x?, corresponding the the frequentist upper limit:

Xgrit +oo
/ dx? f(x?) = CL dx’ f(x?) = 1-CL = a
0 Xgrit
If the x? value obtained in the actual measurement is higher than the selected xin-t, then we

should reject the hypothesis of data consistency with the model (can still be due to the data,
not the wrong model).
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Hypothesis Testing

Critical \?

The other approach is to define, for given probability CL (confidence level) the critical value of

x?, corresponding the the frequentist upper limit:

Xgrit +oo
/ dx? f(x?) = CL dx’ f(x?) = 1-CL = a
0

Xgrit
If the x? value obtained in the actual measurement is higher than the selected xin-t, then we

should reject the hypothesis of data consistency with the model (can still be due to the data,
not the wrong model).

Very low P values, P(x?) < 1, are also not expected (not likely)!
If x2 < N (except for very small V), this usually indicates a problem:

@ overestimated uncertainties of measurements (or correlations not properly included)

@ hidden correlations between measurements (which we treat as independent variables)
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Hypothesis Testing SR

Critical \?
Table of critical x? values (Brand) 3
p=["raipar
P
f 0.900 0.950 0.990 0.995 0.999
1 2.706 3.841 6.635 7.879  10.828
2 4.605 5.991 9.210 10.597 13.816
3 6.251 7.815 11.345 12.838 16.266
4 7.779 9.488 13.277 14.860 18.467
5 9.236 11.070 15.086 16.750  20.515
6| 10.645 12592 16.812 18.548 22.458
7| 12.017 14.067 18475 20.278 24.322
8| 13.362 15.507 20.090 21.955 26.124
9| 14.684 16919 21.666 23.589 27.877
10| 15987 18307 23209 25.188  29.588
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Hypothesis Testing SR

Critical y? 08_critical.ipvnb
. Critical x? curves
Plot of critical values 4.0 X ———
2 s p=0.01
for reduced x 3.5/ L oos
—e— p=0.1
3.0 il
—— p=0.95
p=0.5 shows the median s 2.51 \ pm0-39
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<. 2.0/
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1.0
0.5
0.0 —F=—— | | | | |
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

N

A.F.Zarnecki Statictical analysis 08 November 21, 2024


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/08_Least-squares_method/08_critical.ipynb
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Critical \?

Plot of critical values

for reduced 2
(indicated is p=1— P)

(PDG) n

1.0 F

0.5

0.0
0 10 20 30 40 50

Degrees of freedom n
November 21, 2024

A.F.Zarnecki Statictical analysis 08


https://pdg.lbl.gov/

Hypothesis Testing SR

Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at
the shift parameter for the mean %1

Ox
where mean value X is the best estimate of p assuming Gaussian pdf.

Z g
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Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at

the shift parameter for the mean %1
Ox
where mean value X is the best estimate of p assuming Gaussian pdf.

Z g

But this works only, if we know the uncertainty, oz = o/V/ .
We need to know measurement uncertainties to calculate x2 I...
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Student’s t Distribution

We can verify consistency of the series of measurements x with the true value u by looking at

the shift parameter for the mean %1
Ox

where mean value X is the best estimate of p assuming Gaussian pdf.

Z g

But this works only, if we know the uncertainty, oz = o/V/ .
We need to know measurement uncertainties to calculate x2 I...

If the measurement uncertainties are unknown, or not reliable, we can estimate the variance of
the sample from the data itself (lecture 04)

1
) —\2
§° = N_1 E (xi — X)

i

2 distribution corresponds to x? distribution for N — 1 degrees of freedom
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Hypothesis Testing SR

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by

X—p

§/V/N

but the distribution of t is no longer Gaussian (due to § being a random variable as well).
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Hypothesis Testing =3

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by
X—p
S/VN

but the distribution of t is no longer Gaussian (due to § being a random variable as well).
It can still be calculated analytically:

I r(el) 2 —o
fEn) = 70 T (”n)

where n is the number of degrees of freedom, n = N — 1.
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Hypothesis Testing SR

Student’s t Distribution

Consistency of our measurements x with the true value p can be now described by

X—p
§/V/N

but the distribution of t is no longer Gaussian (due to § being a random variable as well).
It can still be calculated analytically:

oy LT 2\
fEn) = 7% T (”n)

where n is the number of degrees of freedom, n = N — 1.

Distribution is symmetric and has a mean of zero, but larger tails than the Gaussian
distribution, for small N in particular.
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
0.45 t distribution for N = 2 Shape of the t distribution
0'407 for different numbers of
) measurements
c 0.35
>3
20'30’ - Ndf:N—].:].
3‘0.25*
= 0.201
<
S 0.151
S o.10
0.051

November 21, 2024
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
0.45 t distribution for N = 4 Shape of the t distribution
0'407 for different numbers of
) measurements
c 0.35
>3
20'30’ Ndf:N—1:3
3‘0.25*
= 0.201
<
S 0.151
S o.10
0.051
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
0.45 t distribution for N = 6 Shape of the t distribution
0'40 for different numbers of
) measurements
c 0.35
3 i
20.30’ Ndf:N—].:5
3‘0.25*
= 0.201
<
S 0.151
S 0.10/
a
0.051
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
0.45 t distribution for N = 8 Shape of the t distribution
0'407 for different numbers of
) measurements
c 0.35
>3
20'30’ Ndf:N—].:7
3‘0.25*
= 0.201
<
S 0.151
S 0.10/
a
0.051
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 8 Shape of the t distribution
for different numbers of

= 10-1 measurements
5
) Ngyg=N-1=7
Q.
> 1072
= tails are clearly non-Gaussian...
2 o
o 10™
a

1074
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Hypothesis Testing

Student’s t Distribution

t distribution for N = 2
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Shape of the t distribution
compared with Gaussian
distribution
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Hypothesis Testing

Student’s t Distribution

t distribution for N = 4
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Shape of the t distribution
compared with Gaussian
distribution

Ngg=N-1=3
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb

t distribution for N = 6 Shape of the t distribution
compared with Gaussian
distribution

Nyg=N-1=5
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb

t distribution for N = 8 Shape of the t distribution
compared with Gaussian
distribution

Nyg=N—-1=7

November 21, 2024
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othesis Testing

Student’s t Distribution
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= 8 3
w N —

Probability per unit
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o
&

t distribution for N = 8
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Shape of the t distribution
compared with Gaussian
distribution

Nyg=N—-1=7
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Student’s t Distribution
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w N —

Probability per unit
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t distribution for N = 10
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Shape of the t distribution
compared with Gaussian
distribution

Probability of large fluctuations
still significantly enhanced!
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Hypothesis Testing

Student’s t Distribution

= = =
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Probability per unit
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t distribution for N = 20
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 50 Shape of the t distribution
compared with Gaussian
+ 10-1 distribution
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Hypothesis Testing SR

Student’s t Distribution 08_t-dist.ipynb
t distribution for N = 100 Shape of the t distribution
compared with Gaussian
+ 10-1 distribution
=
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Hypothesis Testing

Student’s t Distribution

“Critical values” of t for small
numbers of degrees of freedom f

A.F.Zarnecki

\
N /’/
. ;\\\ s

(Brandt)
tp
P= [ s
—00
P
£10.9000 09500 0.9750 0.9900 0.9950 0.9990  0.9995
1| 3.078 6314 12,706 31.821 63.65/ 318.300 636.619
2| 1.88 2920 4303 6965 9.925 22327 31.599
3| 1.638 2353 3.182 4541 5841 10215 12924
4] 1533 2132 2776 3747 4604 7173 8610
5| 1476 2015 2571 3365 4.032 5893  6.869
6| 1.440 1943 2447 3.143 3707 5208  5.959
7| 1415 1.895 2365 2998 3499 4785  5.408
8| 1397 1.860 2306 2.896 3355 4501  5.041
9| 1383 1.833 2262 2821 3250 4297 4781
10| 1372 1812 2228 2764 3.169 4.144  4.587
11| 1363 1796 2201 2718 3.106 4025  4.437
12| 1356 1782 2179 2.681 3.055 3930 4318
13| 1350 1771 2160 2650 3.012 3852 4221
14| 1345 1761 2145 2.624 2977 3787  4.140
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Student’s t Distribution 08_t-limit.ipynb
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Statistical analysis of experimental data > .

Least-squares method

e Linear Regression
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Linear Regression %

General case

We introduced 2 in a very general form:

2

> (vi — i)
=) o2
1

i=1

where different u; and o; are possible for each of N measurement y;
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Linear Regression %
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General case

We introduced x? in a very general form:
2
2 _ (vi — pi)
=) o2

i=1 i

where different u; and o; are possible for each of N measurement y;

It is quite often the case that values of u; depend on some controlled variables x; and a
smaller set of model parameters:

pi = p(xi;a)

we can then use the least-squares method to extract the best estimates of parameters a from
the collected set of data points (x;, y;)

We can look for minimum of x? using different numerical algorithms...
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Linear Regression ’im

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

M
p(xia) = Y ax fix)
k=1

where f(x) is a set of functions with arbitrary analytical form.
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Linear Regression ’im

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

M
p(xia) = Y ax fix)
k=1

where f(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:
M
fil(x) = xk = u(x;a) = Zak xk=1
k=1

but any set of functions can be used, if they are not linearly dependent.
Set of functions ortogonal for a given set of points x; should work best...
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Linear Regression %

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)
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Linear Regression ’im

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

o 0 i (yi LD fk(Xi))2

I
o

c’)a, a 83/ 1 Oj
=
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Linear Regression ’im

Parameter fit Bonamente

Least-squares method is the special case of the maximum likelihood approach,
when we can assume Gaussian pdf for measurements y;.

As the best estimate of the parameter set a we choose the parameter values
which correspond to the (global) x? minimum (= maximum of log-likelihood)

To look for x? maximum, we consider partial derivatives:

o 0 i (yi LD fk(Xi))2

Oa IR ) Oij
=

N
= 2) (y; - Z%l.Zak fk(Xi)) (i)

i=1 !
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Linear Regression ’im

Parameter fit Bonamente

We obtain a set of M equations for M parameters a;:

Zf’x’ ( Zakka,) — 0 I=1...M

i—1 i
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Linear Regression ’im

Parameter fit Bonamente

We obtain a set of M equations for M parameters a;:

Zf’x’ ( Zakka,) — 0 I=1...M

i—1 i

which can be rewritten as:
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Linear Regression ’im
Bonamente

Parameter fit
We obtain a set of M equations for M parameters a;:

Zf’x’ ( Zakka,) — 0 I=1...M

i—1 i

which can be rewritten as:

k=1 \i=1 ! i=1
or in the matrix form: A-a = b
N N
fi i f) i fi i) Yi
where Ay = Z 1) 2k(x) and by = Z I(X2)y
o o
i i=1 i

November 21, 2024
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Linear Regression ’im

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A

a = Al.b
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Linear Regression ’im

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Al.b

This also gives us the estimate of parameter covariance matrix:

2 -1 2.2 \ 1
C, = _ﬁ — laix — A1
Oa; Day 2 0a; Dak
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Linear Regression ’im

Parameter fit

Solution of this set of equations can be obtained by inverting matrix A
a = Al.b

This also gives us the estimate of parameter covariance matrix:

2 -1 2.2 \ 1
C, = _ﬁ — laix — A1
Oa; Day 2 0a; Dak

Ca = (N fi(xi) fk(Xi)>_1

2
1 i

One can write

Expected uncertainties of the extracted parameter values depend on the choice of
measurement points x; but, surprisingly, do not depend on the actual results y;
= very useful when planning the experiment...
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Linear Regression

Linear fit example 08 fitLipvnb
Pseudo data
Fitting Fourier series to 0.61 l
example data set } /

Z:;‘. KA

example model = § 00 ** }+
-0.21 ++ *{
oa
_0_6_

-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
X
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Linear Regression ’im

Linear fit example 08_fitLiovnb
Linear fit Npar=3 x?2=17.73/16

Fitting Fourier series to 0.61 }
example data set 0.4 }}

0.2 +}
0.0 \ *+ * +
—02{ t } *+

—0.41 }+

y(x)

T 00-075-050-025 0.00 0.25 050 075 1.00
X
y(x) = ao+ arsin(x) + a2 cos(x)
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Linear Regression ’im

Linear fit example 08_fitl.ipvnb
Linear fit Npar=5 x2=17.1/14
Fitting Fourier series to 0.61 }
example data set 0.4 }}

0.2 +}

% ooy a &
-0.2] ++ } +
—0.4 \+\}ﬁ,+/’/
3 I O S S S SO S —
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
M X
y(x) = ao+ Z azn—1sin(nx) + azpcos(nx) M =2

n=1
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Linear Regression ’im

Linear fit example 08_fitLiovnb
Linear fit Npar=7 x2=9.29/12

Fitting Fourier series to 0.61 t
example data set 0.4 H’

0.2 + }

Probably optimal choice Z o001 1 ** **
—0.2 ++ * *
ety
—0.6+— ‘ : : ‘ : ‘ ; ;
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
M X
y(x) = ao+ Z axp—1sin(nx) + aspcos(nx) M =3

n=1
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Linear Regression ’im

Linear fit example 08_fitLiovnb
Linear fit Npar=9 x2=6.73/10

Fitting Fourier series to 0.61 l
example data set 0.4l }} .

0.2 + f

“Overtraining ?" § 0.0/ 1 ++ +*
-0.21 ++ f+
oy
—0.64— | | | | | | | |
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
M X
y(x) = a0+ Z azp—1sin(nx) + agpcos(nx) M =

n=1
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Linear Regression ’im

Linear fit example 08_fitLiovnb
Linear fit Npar =11 x> =5.55/8

Fitting Fourier series to 0.61

example data set 0.4 }1[

0.2 + }

“Overtraining ?" § 0.0 5 ** +*
-0.21 ++ +
0.4 i +
V) p e — e —
~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
M X
y(x) = ao+ Z axp—1sin(nx) + azpcos(nx) M =

n=1
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Linear Regression ’im

Linear fit example 08_fitLiovnb
Linear fit Npar =15 x?=4.34/4

Fitting Fourier series to 0.61

example data set 0.4 }1 }

0.21 - \\ }
2 | Y +

“Overtraining ?” § 001 *+ *
-0.21 + t }%
~0.41 ++ {
~0.6+— | | | ‘ ‘ | | |
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00
M X
y(x) = a+ Z azn—1sin(nx) + axpcos(nx) M =6

n=1
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Linear Regression > .

Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?
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Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)

@ Parameters become highly correlated

@ Values and errors of the individual parameters increase
differences of large contributions

o Additional parameters are consistent with zero
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Best fit choice?

If the functional dependence is not predicted by any theory/model, we can try to fit a
polynomial or function series. WWhen should we stop?

How can we recognize that we have too many parameters?
Beside looking at the P value corresponding to the obtained y?

e Adding new parameter results in only moderate x? decrease, O(1)
@ Parameters become highly correlated
@ Values and errors of the individual parameters increase
differences of large contributions
o Additional parameters are consistent with zero
o Fit starts to follow fluctuations of the measurement results

A.F.Zarnecki Statictical analysis 08 November 21, 2024




Linear Regression ’im

Best fit choice?

Example of fit with too high polynomial order

Linear fit Npar=8 2=4.76/11
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Linear Regression %

Best fit choice?

Example of fit with proper polynomial order

Linear fit Npar=3 %2=10.21/16
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Linear Regression %

Best fit choice?

Example of fit with

Linear fit Npar=3 %2=10.21/16
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74

0 0.2 0.4 0.6 0.8 1
We need to understand what we measure, what to expect!
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Linear Regression %

Learning on errors

Linear fit Npar=3 %2=15.04/16

When “wrong” set of “::: 0.6 F
functions (highly Z . _{_
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Learning on errors
Linear fit Npar=5 %2=25.75/14

When “wrong” set of 5‘; 06 L "
functions (highly oa - A_
correlated) is selected... TE ?
02 [ % %*\
: % N
N4 i
u l
oF
-1 -05 0 05 1
M X
y(x) = ao+ Z azp—1sin"(x) + agpcos’(x) M =2

n=1
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Learning on errors

Linear fit Npar=7 %2=24.39/12

When “wrong” set of < sk r
functions (highly

correlated) is selected... 0.4 %Y *}
0.2 .

. A N

t

S,
g

0

{
0.2 } 44
04l }\L,f/{
: t
-06 [ e — e e .
-1 -05 0 05 1
M X
y(x) = a0+ Z azp—1sin"(x) + agpcos”(x) M =

n=1
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Linear Regression %

Learning on errors

Linear fit Npar=9 %2=41.39/10

When “wrong” set of “::: 06
functions (highly -

) 0.4
correlated) is selected... -
) 02 [ $ I;/ \;;\&

T

N

==
=_=

B L
Poor numerical precision o2 . 1,1_/ \T‘
due to high correlations - Y\t } } !
between parameters 04 \L{'/
06 | v
-1 -05 0 0.5 1
M X
y(x) = ao+ Z agp—1sin”(x) + agpcos’(x) M =
n=1
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Linear Regression %

Learning on errors

Linear fit Npar=11 %2=33.77/8

When “wrong” set of z 05 [ r
functions (highly -

0.4 T h
correlated) is selected... T
0.2 It L N
L J
i

N \ b
0F
Poor numerical precision o2 - +\ /{1

. . =L b4 TT
due to high correlations - ;\i /i
& -0.4

between parameters. “E \FT
-06 F S
sin?(x) + cos?(x) =1 -1 -05 0 0.5 1
M X
y(x) = 30+Zazn—ﬁin"(x)—i-azncos”(x) M =
n=1
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Linear Regression >

Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to k, / =0... M
(for polynomial fit of order M, M + 1 parameters).

N I+k N

Z X,-( o Z X,-I Yi
A/k = 3 and b/ = 5

. g: _ (o

i=1 ! i=1 !
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Polynomial fit example

For clarity of notation, it is convenient to change parameter numbering to k, / =0... M
(for polynomial fit of order M, M + 1 parameters).

N X(H—k) N XI yi
A/k = E ’0_2 and b/ E 10-2’
i=1 i i=1 i
For uniform uncertainties it is then:
M
1 Xi . X Vi
2 M+1
A=) b ==
0% 4 : : g% 4 :
=1 . . =1
M M-+1 2M M
X/ Xi Xi Yi X/

quite simple to implement...
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

P o= (y—uxa)T Ay — p(xa))

Its distribution should correspond to the x? distribution for Ngr = N — M
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Uncertainty estimate

The x? value at the minimum can be then calculated as:

P o= (y—uxa)T Ay — p(xa))

Its distribution should correspond to the x? distribution for Ngr = N — M

If o is the same for all measurements, the extracted parameter values do not dependent on it!
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Linear Regression ’im

Uncertainty estimate

The x? value at the minimum can be then calculated as:

o= (y—p(xa)T Ay — p(x;a))
Its distribution should correspond to the x? distribution for Ngr = N — M

If o is the same for all measurements, the extracted parameter values do not dependent on it!
We can use the calculated value of ¥ to validate the model (test model hypothesis), but also
to “correct” our uncertainties, if we consider them unreliable (or they are unknown).
Resulting variance estimate:
52 _ 2. X2
N—-M

This is useful in particular when ¥? < Ng¢ (overestimated o)
For ¥? > Ny we need to consider the possibility that our model is wrong...
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Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

M M
u(x,z;a) = ZZak/ xk Z!

k=0 /=0
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Linear Regression >

Multiple independent variables

The described approach works also for multi-dimensional dependencies!
For example, we can consider polynomial of order M in two coordinates:

xza E Eak/xz

k=0 /=0

All we need to do is to order the pairs of indexes, so that vector a is properly defined.
Example for M =1 (2-D plane): a = (ago, 210, 201)

Y 1 x z L vy
A—;Z x x> xz b:;z Y x
i=1 2 i=1

zZ Xz z yz

where measurement indexes i = 1..

. N were skipped for variables x;, y; and z;
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Statictical analysis 08

November 21, 2024



Statistical analysis of experimental data > .

Least-squares method

@ Homework
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Homework Solutions to be uploaded by December 4.

Download the set of data from the lecture home page.
Text file with three columns: x;, yi, oy,

Data for the fit

Use linear regression method to fit 50/ \ !
polynomial dependence to the data. .
1.5
Calculate p-value for the 3rd order +
polynomial fit. = o
]
L]
Find the order of polynomial, which is v
. . 0.5 [ v
adequate for the description of the data et
and give arguments for your choice. 00l lesese
0.0 0.2 0.4 0.6 0.8 1.0 1.2
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