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Linear Regression

General case Lecture 08

We introduced χ2 in a very general form:

χ2 =
N∑
i=1

(yi − µi )
2

σ2
i

where different µi and σi are possible for each of N measurement yi

It is quite often the case that values of µi depend on some controlled variables xi and a
smaller set of model parameters:

µi = µ(xi ; a)

we can then use the least-squares method to extract the best estimates of parameters a from
the collected set of data points (xi , yi )

We can look for minimum of χ2 using different numerical algorithms...
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Linear Regression

Linear case

The case which is particularly interesting is when the dependence is linear in parameters (!):

µ(x ; a) =
M∑
k=1

ak fk(x)

where fk(x) is a set of functions with arbitrary analytical form.

One of the examples is the polynomial series:

fk(x) = xk ⇒ µ(x ; a) =
M∑
k=1

ak xk−1

but any set of functions can be used, if they are not linearly dependent.
Set of functions ortogonal for a given set of points xi should work best...
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Linear Regression

Parameter fit

We obtain a set of M equations for M parameters ai . In the matrix form:

A · a = b

where Alk =
N∑
i=1

fl(xi ) fk(xi )

σ2
i

and bl =
N∑
i=1

fl(xi ) yi
σ2
i

Solution can be obtained by inverting matrix A:

a = A−1 · b

This also gives us the estimate of parameter covariance matrix:

Ca =

(
N∑
i=1

fl(xi ) fk(xi )

σ2
i

)−1

= A−1
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Non-linear fit procedure

Iterative procedure Lecture 09

We start from some “initial guess” of parameter values a0.

Assuming small variations of the model parameters, a = a0 + δa, we can expand χ2 in a series:

χ2(a) = χ2(a0)− 2 b · (a− a0) + . . .

where b is the negative gradient of χ2:

b = −1

2
∇ χ2(a0) bj = −1

2

∂χ2

∂aj
=

N∑
i=1

yi − µi

σ2
i

· ∂µi

∂aj

Vector b defines the direction of steepest χ2 descent.
One of the possible procedures is to make a step in this direction:

a1 = a0 + ε b

with small ε > 0 and then repeat the whole procedure...
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Non-linear fit procedure

Iterative procedure

We can try to be “smarter”. Expanding χ2 to quadratic term:

χ2(a) = χ2(a0)− 2 b · (a− a0) + (a− a0)
⊺A(a− a0) + . . .

where A is the so called Hessian matrix of second derivatives:

Ajk =
1

2

∂2χ2

∂aj ∂ak

∣∣∣∣
a=a0

≈
N∑
i=1

1

σ2
i

· ∂µi

∂aj
· ∂µi

∂ak
(neglecting

∂2µi

∂aj ∂ak
)

In this approximation, we can calculate the expected position of the χ2 minimum:

∇ χ2(a) = −2 b + 2 A (a− a0) = 0

⇒ am = a0 + A−1b

and we can try to “jump” directly to the minimum...
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Non-linear fit procedure

Marquardt Minimization

One of the popular approaches, combining the two previously discussed:

ai+1 = ai + (A+ λ · I)−1 b

where λ is an additional parameter determining the performance of the algorithm:

for λ ≫ 1 we make a small step along the gradient direction
which corresponds to the gradient minimization with ε ≈ 1

λ

for λ ≪ 1 we try to “jump” directly to the minimum position
Hessian matrix solution is reproduced for λ → 0

The key element proposed by D.W.Marquardt (1963) was to use variable λ parameter,
adjusting its value to the results of the previous step...
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Constrained fit

Model constraints

We consider set of N measurement points (xi , yi ), which can be compared to model
predictions depending on parameters a in terms of the χ2 value:

χ2(a) =
N∑
i=1

(yi − µ(xi , a))
2

σ2
i

Best estimate of a should correspond to the minimum of χ2(a).

However, we now need to look for this minimum taking additional constraints into account:

wk(a) = 0 k = 1 . . .K

where number of constraints K should be lower than number of parameters M.

How can we find the best parameter values in this case?
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Constrained fit

Model reduction

The first approach is to reduce number of model parameters, using constraints to eliminate
some of the model variables. ⇒ We thus reduce the problem with M model parameters to
problem with M ′ = M − K independent parameters. (method of elements)

Example

We would like to fit polynomial model to a series of measurements where the azimuthal angle
θ ∈ [−π,+π] is the controlled variable:

µ(x ; a) =
M−1∑
k=0

ak

(
θ

π

)k

=
∑
k

ak xk

where we introduced x = θ
π for simplicity.

And we expect that the distribution should vanish for θ → ±π:

µ(−1; a) = µ(+1; a) = 0 K = 2
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Constrained fit

Method of Lagrange Multipliers

The method, invented by J.L.Lagrange in 1788, applies to general minimization problem with
additional constraints imposed.

Problem of finding minimum of χ2 (a) with constraints wk(a) = 0 is equivalent to finding a
stationary point (point with all first derivatives at zero) of the Lagrange function:

L(a,λ) = χ2(a) +
∑
k

2λkwk(a)

where we introduce additional K parameters λk - Lagrange multipliers

Our problem is now reduced to finding parameters a and λ fulfilling

∂L
∂aj

= 0 and
∂L
∂λk

= 0

(without any additional constraints)
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Constrained fit

Method of Lagrange Multipliers

We can write these equations the matrix form: A D

D⊺ 0

 ·

 a

λ

 =

 b

c


Ã

where: Ajk =
N∑
i=1

fj(xi ) fk(xi )

σ2
i

, Djk = dk, j and bj =
N∑
i=1

fj(xi ) yi
σ2
i

and the problem can be solved by inverting matrix Ã.

Covariance matrix for a can be extracted as: (seems to work for linear problems)

(Ca)ij = (Ã−1)ij i , j = 1 . . .M
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Systematic effects

Statistical uncertainties

We have considered numerical results of experiments as random variables.

Probability to obtain given numerical result was described by PDF.
Results of a repeated experiment were considered as independent variables.

Uncertainties of the results were related to the fluctuations in the measurement due to:

actual nature of the physics process studied (lecture 01)
eg. exponential distribution for decay time measurement
finite precision of our instruments
eg. precision with which decay time is measured in the detector
inhomogeneity of the population studied
eg. different particles/isotopes in the considered sample

Uncertainties related to fluctuations of the individual measurement results
are usually referred to as statistical uncertainties.
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Systematic effects

Systematic uncertainties

Particle physics experiments are quite complex, and so is the data analysis.
We frequently use Monte Carlo methods to correct for different effects.

Simplest example is the (differential) cross section measurement:

σi =
Ni

εi Ai L

where: Ni is the measured number of events (in given bin i), ε - event selection efficiency,
A - detector acceptance and L - integrated luminosity.

Statistical uncertainty of the extracted cross section value is due to the Poisson fluctuations in
the number of reconstructed events.

But we also need to take into account that other factors (εi , Ai , L) are also known with finite
precision ⇒ systematic uncertainties
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Systematic effects

Sources of systematic uncertainties

One needs to distinguish between systematic effect/error and uncertainty!

(Bonamente) The term systematic error designates sources of error that systematically shift
the signal of interest either too high or too low. Sources of systematic errors need to be
identified to correct the erroneous offset. A typical example is an instrument that is
miscalibrated and systematically reports measurements that have an erroneous offset.

(Barlow; quotes after J. Orear, Notes on Statistics for Physicists)
”Systematic effects” is a general category which includes effects such as background, selection
bias, scanning efficiency, energy resolution, angle resolution, variation of counter efficiency
with beam position and energy, dead time, etc.

Systematic effects are not a problem, if we understand them and know how to model them
precisely (correct the final result for systematic error).
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A.F.Żarnecki Statictical analysis 10 December 5, 2024 16 / 56

http://ned.ipac.caltech.edu/level5/Sept01/Orear/Orear.html


Systematic effects

Sources of systematic uncertainties

One needs to distinguish between systematic effect/error and uncertainty!

(Bonamente) The term systematic error designates sources of error that systematically shift
the signal of interest either too high or too low. Sources of systematic errors need to be
identified to correct the erroneous offset. A typical example is an instrument that is
miscalibrated and systematically reports measurements that have an erroneous offset.

(Barlow; quotes after J. Orear, Notes on Statistics for Physicists)
”Systematic effects” is a general category which includes effects such as background, selection
bias, scanning efficiency, energy resolution, angle resolution, variation of counter efficiency
with beam position and energy, dead time, etc.

Systematic effects are not a problem, if we understand them and know how to model them
precisely (correct the final result for systematic error).
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Systematic effects

Sources of systematic uncertainties

Systematic uncertainty is the uncertainty in the estimation of systematics.

(O.Behnke et. al, Data Analysis in High Enegy Physics) Systematic uncertainties:
all uncertainties that are not due to statistical fluctuations in real or simulated data samples.

Systematic effects and their uncertainties are often estimated based on separate, independent
experiments. This is the case for both the experimental uncertainties (eg. detector calibration,
alignment) as well as those related to the theoretical model (eg. value of the coupling
parameter, particle masses, assumed cross sections).

The maximum-likelihood approach can be used to estimate the impact of systematic effect
and the resulting uncertainty of the measurement.
Likelihood function of the procedure used to constrain the systematic effect should be folded
into the likelihood function of the main experiment.
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Systematic effects

Systematic uncertainties

In our simple example of cross section measurement:

σi =
Ni

εi Ai L
the statistical uncertainty on σi is due to Poisson fluctuations in Ni :

σstat =
σNi

εi Ai L
=

√
Ni

εi Ai L
=

σi√
Ni

Uncertainty on εi Ai can result from many different sources (including eg. energy calibration),
but one should also take into account contribution from the finite statistics of the Monte Carlo
events: ri = εi Ai

σri =

√
ri (1− ri )

NMC
(binomial distribution)

where NMC is the total number of (unweighted) Monte Carlo events (before selection)
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Systematic effects

Systematic uncertainties

The resulting systematic uncertainty on the cross section measurement:

σsys(MC) = σi ·
σri
ri

= σi ·
√

1− ri
ri NMC

= σi ·
√

1− ri

NMC
i

where NMC
i is the number of MC events accepted in cross section bin i .

Uncertainties due to MC statistics are not correlated between bins!

Systematic uncertainty due to integrated luminosity measurement:

σsys(L) = σi ·
σL
L

is 100% correlated between different cross section measurements (bins).

In general, arbitrary level of correlation (when more than one effect is taken into account) is
possible for systematic uncertainties...
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A.F.Żarnecki Statictical analysis 10 December 5, 2024 20 / 56



Estimating systematic uncertainties

Extended model

We considered outcome of our experiment yi as a random variable with given probability
density function (usually assumed to be Gaussian)

f (yi ) = G (yi ;µi , σi )

where, in the general case, the uncertainty of the measurement was given by
(the square root of) the variance of the distribution:

σ2
(stat) i = V(yi ) = ⟨(yi − µi )

2⟩

This is how we can define the statistical uncertainty: uncertainty of the measurement when
the expected value (and other parameters of pdf) are precisely known:

µi = µ(xi ; a)

with controlled variable xi and all model parameters a fixed.
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Estimating systematic uncertainties

Extended model

To describe systematic effects, we need to introduce additional parameters in the model:

µi = µ(xi ; a, s)

where parameters sj describe different sources of systematic uncertainty.

We usually assume some nominal, expected values of these parameters, s0.
Uncertainties of these parameters, σs, are then what contributes to the systematic uncertainty
of our measurements:

µi = µ(xi ; a, s) = µ(xi ; a, s0) +
∑
j

∂µi

∂sj
· (sj − s0, j)

µi = µ0(xi ; a) +
∑
j

∂µi

∂sj
σsj · δj δj =

sj − s0, j
σsj

where we introduce variations δj scaled to unit normal distribution (µ = 0, σ = 1)
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Estimating systematic uncertainties

Extended model

Assuming there is no systematic bias in the measurement (or we already corrected for it),
averaging over s we should get:

E(µi ) = µ0(xi ; a)

what follows is: yi − µi = (yi − µ0, i ) + (µ0, i − µi )

V(yi ) = ⟨(yi − µi )
2⟩ = ⟨(yi − µ0, i )

2⟩ + ⟨(µi − µ0, i )
2⟩

σ2
yi

= σ2
(stat) i + σ2

(sys) i

= σ2
(stat) i +

∑
j

(
∂µi

∂sj

)2

σ2
sj

where we assume independent sources of systematic variations.
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Estimating systematic uncertainties

Extended model

Covariance matrix for the series of measurements yi :

Cy = E((yi − µi )(yj − µj))

yi − µi = (yi − µ0, i ) + (µ0, i − µi )

= E((yi − µ0, i )(yj − µ0, j)) + E((µi − µ0, i )(µj − µ0, j))

where mixed terms vanish, as systematic variations and
statistical fluctuations are independent

= C(stat)
y + C(sys)

y

where covariance matrix for statistical
uncertainties is diagonal:

C(stat)
ij =

{
σ2
(stat) i for i = j

0 i ̸= j

statistical fluctuations are independent

systematic uncertainties result in correlations
of expectations:

C(sys)
ij =

∑
k

(
∂µi

∂sk

)(
∂µj

∂sk

)
σ2
sk

We can no longer treat measurements as
independent...
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Estimating systematic uncertainties

Example measurement already discussed in lecture 06

SM predictions from HERA
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Combined QCD+EW analysis shows good agreement with
SM predictions

Phys. Rev. D 93 (2016) 092002, arXiv:1603.09628

How were systematic uncertainties on the SM predictions calculated?
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Estimating systematic uncertainties

Example

Let us focus on the “PDF uncertainties”, i.e. uncertainties related to our knowledge of the
Parton Distribution Functions (PDF) of the proton.

Cross section for NC and CC DIS e±p scattering are given in terms of the quark density
functions. In the leading order:

d2σe±p
CC

dxdQ2
=

G 2
F

4π

(
M2

W

M2
W + Q2

)2


u + c + (1− y)2(d̄ + s̄ + b̄) for e−p

(1− y)2(d + s + b) + ū + c̄ for e+p

where u, d , s, c , b are quark densities (ū, d̄ . . . - antiquark) in the proton, extracted by fitting
QCD evolution equations to the large set of data from many experiments (not only DIS).

However, one has to take into account uncertainties of the input data, as well as uncertainties
related to different assumptions in the fit...
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Estimating systematic uncertainties

Example

Analysis of HERA data was based on the QCD fit results implemented in EPDFLIB library

It provided not only the nominal parton density values, but also density values corresponding
to variations of different “systematic parameters”.
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Estimating systematic uncertainties

Example

Correlation matrix for the expected
high Q2 NC DIS cross sections:

Must be taken into account when we
compare our data to SM predictions
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Estimating systematic uncertainties

General remarks

One could think that obtaining the proper final result from the analysis (including estimate of
the statistical uncertainty) is most important and most difficult. We are almost done...

In many cases, proper estimate of systematic uncertainties turn out to be much more difficult
and more time consuming than the “nominal study”.

This is also because there is no “default solution” to the problem.

One should consider all possible systematic effects, sources of systematic uncertainties, which
could affect the measurement. Each parameter you use in your formula or your analysis code
should be considered as a potential source of uncertainty.

But one should also be careful not to overestimate the uncertainties!
Need to distinguish “systematic variations” and “systematic checks”...
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Estimating systematic uncertainties

Systematic checks
Usually, there are many parameters in the theoretical model or in the detector descriptions
which are known with finite precision. This is the source of systematic uncertainties.
And systematic bias, if our estimates of these parameters are wrong.

But there are also many parameters, which we put “by hand”, i.e. reconstruction method,
selection cuts. There are also many choices, which one can make, i.e. of the proton PDF.

Final result of our analysis should not depend on these choice, if our approach is valid, but
some variations can occur.

One should be very careful! These variations are often due to the finite MC statistics. One
should not include them in the systematic uncertainty estimate.

Otherwise, systematic uncertainties can easily “explode”,
if we use large number of “systematic checks”...

A.F.Żarnecki Statictical analysis 10 December 5, 2024 30 / 56



Estimating systematic uncertainties

Systematic checks
Usually, there are many parameters in the theoretical model or in the detector descriptions
which are known with finite precision. This is the source of systematic uncertainties.
And systematic bias, if our estimates of these parameters are wrong.

But there are also many parameters, which we put “by hand”, i.e. reconstruction method,
selection cuts. There are also many choices, which one can make, i.e. of the proton PDF.

Final result of our analysis should not depend on these choice, if our approach is valid, but
some variations can occur.

One should be very careful! These variations are often due to the finite MC statistics. One
should not include them in the systematic uncertainty estimate.

Otherwise, systematic uncertainties can easily “explode”,
if we use large number of “systematic checks”...
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Statistical analysis of experimental data

Systemactic uncertainties

1 Systematic effects

2 Estimating systematic uncertainties

3 Including systematic effects

4 Reducing variables

5 Homework
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Including systematic effects

Example (Toy model)

An experiment is designed to measure an unknown parameter η.

Two measurements are considered (different experiment configurations) corresponding to two
random variables x and y related to the physics parameter η :

xtrue = a+ η

ytrue = a+ 2 · η

where a is the background contribution predicted by theory.
Both variables are measured with the same statistical precision σstat

We can find the optimum way of extracting η by writing down:

χ2(η) =

(
x − a− η

σstat

)2

+

(
y − a− 2η

σstat

)2
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Including systematic effects

Example

Looking at the minimum of χ2 we find:

0 =
∂χ2

∂η
= − 2

σ2
stat

(
x − a− η + 2(y − a− 2η)

)

⇒ 5η = x + 2y − 3a ⇒ η =
1

5
x +

2

5
y − 3

5
a

This result is not surprising, if we realize that η can be extracted from x and y independently:

η(x) = x − a and η(y) =
1

2
(y − a)

ση(x) = σstat ση(y) =
1

2
σstat

and minimum of χ2 corresponds to the weighted average of the two measurements,
with uncertainty: σy = 1√

5
σstat
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Including systematic effects

Example

Let us now include systematic variation ∆sys of the background estimate a,
so that the expected results of the measurement are

⟨x⟩ = xtrue +∆sys

⟨y⟩ = ytrue +∆sys

We assume that systematic variation ∆sys has normal distribution with zero mean (unbiased)
and width given by σsys :

∆sys = δ · σsys
where variation δ has unit normal distribution (µ = 0, σ = 1)

First guess would be to include systematic uncertainty in the final results:

η =
1

5
x +

2

5
y − 3

5
a ⇒

σ2
y =

1

25
σ2
stat +

4

25
σ2
stat

+
9

25
σ2
sysσ2

y =
1

5
σ2
stat

but is it the optimal procedure?
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A.F.Żarnecki Statictical analysis 10 December 5, 2024 34 / 56



Including systematic effects

Example

Let us now include systematic variation ∆sys of the background estimate a,
so that the expected results of the measurement are

⟨x⟩ = xtrue +∆sys

⟨y⟩ = ytrue +∆sys

We assume that systematic variation ∆sys has normal distribution with zero mean (unbiased)
and width given by σsys :

∆sys = δ · σsys
where variation δ has unit normal distribution (µ = 0, σ = 1)

First guess would be to include systematic uncertainty in the final results:

η =
1

5
x +

2

5
y − 3

5
a ⇒

σ2
y =

1

25
σ2
stat +

4

25
σ2
stat

+
9

25
σ2
sysσ2

y =
1

5
σ2
stat

but is it the optimal procedure?
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Including systematic effects

Example

We should include systematic variation in global likelihood. For Gaussian uncertainties we get:

χ2(η, δ) =

(
x − a− η − δσsys

σstat

)2

+

(
y − a− 2η − δσsys

σstat

)2

+ δ2

where δ2 term corresponds to the likelihood of the systematic variation

We can calculate partial derivatives to get system of equations:

∂χ2

∂η
: 5η + 3σsysδ = x + 2y − 3a

∂χ2

∂δ
: 3σsysη + (2σ2

sys + σ2
stat)δ = (x + y − 2a)σsys

which we can solve to obtain:

η =
(2 + f 2)y + (1− f 2)x − 3a

5 + f 2
where f =

σsys
σstat
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Including systematic effects

Example

For small systematic uncertainties (σsys ≪ σstat , f ≪ 1)

η =
(2 + f 2)y + (1− f 2)x − 3a

5 + f 2
→ 2y + x − 3a

5

and we reproduce previous result.

However, if systematic uncertainties are large (σsys ≫ σstat , f ≫ 1)

η =
(2 + f 2)y + (1− f 2)x − 3a

5 + f 2
→ y − x

which also seems natural (systematic uncertainty cancels in y − x).

It is also interesting to note that for (σsys = σstat , f = 1), measurement of x is not used:

η =
(2 + f 2)y + (1− f 2)x − 3a

5 + f 2
=

y − a

2
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Including systematic effects

Example

Weights of the two measurements and background estimate

η = wx x + wy y + wa a
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Including systematic effects

Example

How about uncertainty of the extracted η value?

We can obtain it from the covariance matrix:

C(η,δ) =

(
1

2

∂2χ2

∂al ∂ak

)−1

=

 5
σ2
stat

3σsys

σ2
stat

3σsys

σ2
stat

2σ2
sys

σ2
stat

+ 1

−1

The resulting uncertainty on η is:

ση = σstat

√
1 + 2f 2

5 + f 2

“simplified approach”

= σstat

√
1

5
+

9f 2

25 + 5f 2
≤ σstat

√
1

5
+

9

25
f 2

for f → ∞ →
√
2 σstat → ∞
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Including systematic effects

General procedure

General procedure for including systematic uncertainties in the analysis is to consider
corresponding systematic shifts as additional model parameters

µi = µ(xi ; a, s)

χ2(a, s) =
N∑
i=1

(yi − µ(xi , a, s))
2

σ2
i

+
K∑

k=1

(sk − s0, k)
2

σ2
sk

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
K∑

k=1

δ2k δk =
sk − s0, k

σsk

If systematic parameters are not independent (are correlated)

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
∑
k,j

(sk − s0, k)(sj − s0, j) (Cs)
−1
j ,k

A.F.Żarnecki Statictical analysis 10 December 5, 2024 39 / 56



Including systematic effects

General procedure

General procedure for including systematic uncertainties in the analysis is to consider
corresponding systematic shifts as additional model parameters

µi = µ(xi ; a, s) = µ(xi ; a
′)

χ2(a, s) =
N∑
i=1

(yi − µ(xi , a, s))
2

σ2
i

+
K∑

k=1

(sk − s0, k)
2

σ2
sk

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
K∑

k=1

δ2k δk =
sk − s0, k

σsk

If systematic parameters are not independent (are correlated)

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
∑
k,j

(sk − s0, k)(sj − s0, j) (Cs)
−1
j ,k
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Including systematic effects

General procedure

χ2 minimization procedure is basically unchanged, only the additional terms (systematic
constrains) need to be included in calculations (as we did for the parameter constraints).
Negative gradient of χ2 uncorrelated systematics

bj = −1

2

∂χ2

∂a′j
=

N∑
i=1

yi − µi

σ2
i

· ∂µi

∂a′j
−

sj − s0, j
σ2
sj

Hessian matrix of second derivatives:

Ajk =
1

2

∂2χ2

∂a′j ∂a
′
k

=
N∑
i=1

1

σ2
i

· ∂µi

∂a′j
· ∂µi

∂a′k
+

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Including systematic effects

General procedure

χ2 minimization procedure is basically unchanged, only the additional terms (systematic
constrains) need to be included in calculations (as we did for the parameter constraints).
Negative gradient of χ2 general case

bj = −1

2

∂χ2

∂a′j
=

N∑
i=1

yi − µi

σ2
i

· ∂µi

∂a′j
−
∑
k

(sk − s0, k) (Cs)
−1
j ,k

Hessian matrix of second derivatives:

Ajk =
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2

∂2χ2

∂a′j ∂a
′
k

=
N∑
i=1

1

σ2
i

· ∂µi

∂a′j
· ∂µi

∂a′k
+ (Cs)

−1
j ,k

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Including systematic effects

General procedure example

Fitting Gaussian peak on top of background example from lecture 09
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Including systematic effects

General procedure example

Fitting Gaussian peak on top of background example from lecture 09

Two peak fit is better, but improvement not very significant, p = 0.034 (1.8σ)
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Including systematic effects

General procedure example

Fitting Gaussian peak on top of background example from lecture 09

But we also see that background fit changes a lot...
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Including systematic effects

General procedure example 10 bg fit.ipynb

Suppose we can perform an independent background measurement with higher precision
and fit parameters of our background model
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Including systematic effects

General procedure example 10 comb fit.ipynb

We can now use parameters from the background fit in signal fit
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Including systematic effects

General procedure example 10 comb fit.ipynb

We can now use parameters from the background fit in signal fit

Second peak significance increase from 1.8σ to 3.1σ (p = 0.0011)
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Statistical analysis of experimental data

Systemactic uncertainties

1 Systematic effects

2 Estimating systematic uncertainties

3 Including systematic effects

4 Reducing variables

5 Homework
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Reducing variables

Problem

In the general case, one can consider a huge number of systematic effects, each will contribute
to the final systematic uncertainty.

Number of systematic effects can be larger than the number of relevant model parameters
(which we want to extract) or even the number of measurements.

Systematic uncertainties of our measurements are (in most cases) correlated, so one needs to
use the full covariance matrix.

Is there a way to simplify the problem?

Is there a way to reduce the number of systematic variations to consider?
This is also important when we want to model the experiment (eg. with Monte Carlo methods)
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Reducing variables

Eigenvectors

Correlations between variables can be removed througth ’rotation’ in the variable space.

µ
1

µ
2

∆
1

∆
2

⇒
µ

1

µ
2

v
1v

2

ε
1

ε
2

This is a problem of finding “eigenvectors” of the covariance matrix. Directions such that:

Cs · v = σ2
v · v
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Reducing variables

Eigenvectors

Eigenvectors of the covariance matrix of systematic parameters define
“uncorrelated directions” in the space of systematic parameter variations.

Variations along these directions are independent (uncorrelated).
We can redefine our systematic variables to remove correlations...

Eigenvalues
Eigenvalues give us the size of variations along given eigenvector (σ2

v)
⇒ we can tell which variations are most relevant

By identifying variations which give leading contributions to the covariance matrix, we can
limit number of variations considered in our problem.

Variations corresponding to eigenvectors with very small eigenvalues can be safely ignored...

In the following, we assume eigenvectors are ordered from highest to lowest eigenvalue.
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Reducing variables

Eigenvectors

Let us consider uncertainties of the high
Q2 NC DIS cross sections again.

Correlation matrix:
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PDF correlations between Q
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Reducing variables

Eigenvectors

Systematic variations corresponding to eigenvectors of correlation matrix:
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Dominant contribution from the first eigenvector... (variations relative to the nominal SM exp.)
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Reducing variables

Eigenvectors
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Reducing variables

Eigenvectors

Variations corresponding to the sum of eigenvector contributions:
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Four first eigenvectors perfectly reproduce total systematic uncertainty
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Reducing variables

Eigenvectors

Correlation matrix comparison: Full matrix Four eigenvectors
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Correlations between PDF variations also very well reproduced by the first four eigenvectors
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Reducing variables

Eigenvector example

Previous example of systematic uncertainties: fit to background only measurements

Fitted background expectations are correlated between points. 20× 20 correlation matrix...
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Reducing variables

Eigenvector example 10 bg fit ev.ipynb

Previous example of systematic uncertainties: fit to background only measurements

Background uncertainties can be presented as independent (!) variations along 3 eigenvectors
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Reducing variables

Eigenvector example 10 bg fit ev.ipynb

Previous example of systematic uncertainties: fit to background only measurements

Although variations along considered eigenvectors are independent (by definition),
systematic correlations between measurements well reproduced...
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Homework

Homework Solutions to be uploaded by December 18.

Modification of the “toy model” presented today.
Electronic scale is used to weigh a cake with mass M.
To do the actual measurement, we place a cake on a dish with mass m, so we measure:

x = m +M

We then repeat the measurement but with two (identical) dishes under the cake:

y = 2m +M

The statistical uncertainty of each measurement is σx = σy = σ,
weight m of the dish is known from independent measurement with uncertainty of σm = f · σ.

1 Try to guess the formula for M for f → 0 and f → ∞
2 Find the optimal (most precise) estimate of M (for arbitrary f ). Compare to guess 1 !
3 Find the uncertainty of the M estimate. Discuss the result.
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