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Statistical analysis of experimental data > .

Variable distributions

@ Variable distributions

© Normalization of the distribution
© Unbinned likelihood

e Hypothesis Testing

© Homework
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Non-linear fit procedure

Iterative procedure (Brandt)
We start from some “initial guess” of parameter values ag.
Assuming small variations of the model parameters, a = ag + da, we can expand x? in a series:

x’(@) = x%*(@@)—2b-(a—ag)+...
where b is the negative gradient of x?:

) O
6aj

N
_ 1 2 1o Vi — i
b= =3 Vx(@) b= "2, _; o2

Vector b defines the direction of steepest y> descent.
One of the possible procedures is to make a step in this direction:

a; = a + b

with small € > 0 and then repeat the whole procedure...
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Non-linear fit procedure o

Iterative procedure (Brandt)
We can try to be “smarter”. Expanding x? to quadratic term:
x’(@) = x%*(@g)—2b-(a—ag)+ (a—ag)TA(a—ag)+...

where A is the so called Hessian matrix of second derivatives:

1 9%y2 N

E aaj 8ak

& i
(neglecting —

aaj 8ak

1 Opi Opi
U,-z aaj 8ak

Ajk

a=ag i=1
In this approximation, we can calculate the expected position of the x? minimum:
Vx*(a) = —2b +2A(a—ay) =0
= a; =ap + A'b

and we can try to “jump” directly to the minimum...
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Non-linear fit procedure o

Iterative procedure (Brandt)
We can try to be “smarter”. Expanding x? to quadratic term:
x’(@) = x%*(@g)—2b-(a—ag)+ (a—ag)TA(a—ag)+...

where A is the so called Hessian matrix of second derivatives:

1 9%y2 N

E aaj 8ak

& i
(neglecting —

aaj 8ak

1 Opi Opi
U,-z aaj 8ak

Ajk

a=ag i=1
In this approximation, we can calculate the expected position of the x? minimum:
Vx*(a) = —2b +2A(a—ay) =0
— a; =ag + (A+A-I)'b

or interpolate between “safe” and “fast” approach... Marquardt Minimization
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Constrained fit

Method of Lagrange Multipliers (Behnke)

The method, invented by J.L.Lagrange in 1788, applies to general minimization problem with
additional constraints imposed.

Problem of finding minimum of x2 (a) with constraints wy(a) = 0 is equivalent to finding a
stationary point (point with all first derivatives at zero) of the Lagrange function:

L@ A) = x*(a) + Y 2\w(a)
k

where we introduce additional K parameters Ay - Lagrange multipliers

Our problem is now reduced to finding parameters a and A fulfilling

oL oL
[ d -
aaj 0 an 8)\k

(without any additional constraints)

=0
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Constrained fit ’im

Method of Lagrange Multipliers

We can write these equations the matrix form:

A D _ a b

DT 0 A (o
A
- 6(x) filx) - () vi
where: Ajk = Z J Iazk ! 7Djk = dk,j and bj = Z J sz Yi
i=1 i i=1 i

and the problem can be solved by inverting matrix A.

Covariance matrix for a can be extracted as: (seems to work for linear problems)

(Ca)j = (A™h); ij=1...M
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Including systematic effects > .

General procedure

General procedure for including systematic uncertainties in the analysis is to consider
corresponding systematic shifts as additional model parameters

pi = p(xias) = p(x;a)

2 N (vi — pu(xi,a,s))? K (sk — S0, k)?
(as) = > 2 DD e

i=1 i k=1 Sk

N N2 K

— u(x;,a — 5

X2(a’) _ (yl /‘1’(21 )) + Zéi 5, = k 0, k

i=1 i k=1 Ts

If systematic parameters are not independent (are correlated)

N
Xz(a/) _ Z (i — (g” + Z Sk — So, k)(si—so J) (Cs ).]_7[1-
i=1
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Including systematic effects > .

General procedure

X2 minimization procedure is basically unchanged, only the additional terms (systematic
constrains) need to be included in calculations (as for the parameter constraints).

Negative gradient of x? uncorrelated systematics
5 N
b ~1ox _Zyi—u;_c?uf _Si—%0,j
] /T 2 / 2
2 8aj ~ O 8aj s
Hessian matrix of second derivatives:
= 2O 5oL oom O O
/ 204; 0ay o7 Od; Oa) o2

where systematic shifts s are assumed to go first in @' (for proper indexing)
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Including systematic effects > .

General procedure

X2 minimization procedure is basically unchanged, only the additional terms (systematic
constrains) need to be included in calculations (as for the parameter constraints).

Negative gradient of x? general case
19x° ZN Yi— i Opi >y 1
J 2 83; - O_i2 88_; p (sk S0, k) ( S)J,k

Hessian matrix of second derivatives:

o

1 0%y N Wi Opj 1
Ay = = 2X N~ 9 C.):
Jk 283} da), ;U? 8aj’- daj, + ()

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Statistical analysis of experimental data > .

Variable distributions

@ Variable distributions
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Variable distributions
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Problem

So far, we have considered sets of independent measurements of a random variable Y, which
could depend on some controlled variable X (and a number of model parameters a), assuming
measurement fluctuations are described by Gaussian pdf.

Fit result for Nfun =10 x2= 11.30/10

At
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11_example_data.ipynb

However, the problem frequently met (in high energy physics experiments in particular) is that
we want to extract model parameters not from the fit of Y (X) dependence, but just from the
distribution of the measured X values. Results are often presented in a form of a histogram:

\,
Y
W

Variable distributions

Problem

Distribution of generated decay times

140
120 Example simulation of P3
102 |
,, 100 experiment results
< s (Advanced Physics Lab)
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_example_data.ipynb
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Variable distributions Z

11_example_data.ipynb

However, the problem frequently met (in high energy physics experiments in particular) is that
we want to extract model parameters not from the fit of Y (X) dependence, but just from the
distribution of the measured X values. Results are often presented in a form of a histogram:

Problem

Distribution of generated decay times

Example simulation of P3
10° experiment results
g1 (Advanced Physics Lab)
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_example_data.ipynb

\
N /’/
. ;\\\ s

Variable distributi

Problem 11_example_data2.ipynb

We can consider number of events in each bin of the histogram, n;, as an independent
measurement depending on the controlled variable x;. The only problem we have, to use the
X2 minimization procedure, is to attribute measurement uncertainties to measured numbers of

events.
Distribution of generated decay times
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Variable distributions ;
11_example_data2.ipynb

We can consider number of events in each bin of the histogram, n;, as an independent
measurement depending on the controlled variable x;. The only problem we have, to use the
X2 minimization procedure, is to attribute measurement uncertainties to measured numbers of

Problem

events.
Distribution of generated decay times
Simple guess: -
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Variable distributions ’im

Least-squares fit (Behnke)
Considered approach proposed by K.Pearson in 1900:

when we use the property of the Poisson distribution V(n;) = E(n;) = p;
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Variable distributions ’im

Least-squares fit (Behnke)
Considered approach proposed by K.Pearson in 1900:

when we use the property of the Poisson distribution V(n;) = E(n;) = p;
Unfortunately, the result of the minimization turns out to be biased!
Let us assume that the model expectations can be presented as

pi = Nf
where N is the total event number and f; represents the probability density (normalized)
Estimate /U of N obtained from the minimization condition, %’f =0, is biased:

N = N_Xr2nin
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Variable distributions ’im

Example

It can be easily demonstrated for the flat distribution

Nbin (nj — M)2 Nin qu Nain 1

PJp— 2 f— 7’ f— Pp— — — J— . 2 J—

pi=p = X _21 n; = §1<nl 2M+ni) = N —=2Npinp + : 1”:’
1= 1= 1=
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Variable distributions ’im

Example

It can be easily demonstrated for the flat distribution

Nbin (nj — M)2 Nin qu Nain 1
J— 2 _ ! — . — _ . 2
pi=p = X _Z n; _Z<nl 2M+ni) =N 2me,u+:u . n;
i=1 i=1 i=1
From the minimum condition we obtain:
N .

aX2 bin 1

0= 2% = N, +2udy =

8N bin N; n;

A.F.Zarnecki
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Variable distributions ’im

Example

It can be easily demonstrated for the flat distribution
Npin

) Npin (n’_ _ M)Q Nbpin qu , 1
W=p = X :,z;n,' = Z}(n;—2u+ni> = N — 2Npip jt + pu Zl”
From the minimum condition we obtain:
N .
8X2 bin
0 = = 2N 2 —
au bin + Mlz; i
We then obtain:
-1

which is harmonic mean of n; (not equal to the expected arithmetic mean)
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Variable distributions ’im

Example

It can be easily demonstrated for the flat distribution

Nbpin (n. M)z Nbin 'uz Nbpin 1
o 2 _ i~ _ o B\ B . 2
piEp = X _Zin,- —Z(n, 2“+n,-> = N=2Nomp 42y
i=1 i=1 i=1
From the minimum condition we obtain:
N .
8X2 bin 1
8u bin + 21t ’z; n;

We can use the second relations to remove Z% term and obtain:

Ia — N _Xgnin
Npin  Npin

which confirms that estimate N = Npin - [1 is biased!
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Variable distributions ’im

Least-squares fit (Behnke)
Alternative approach was proposed by J.Neyman in 1949:

Npin

X2 _ Z:(”i*,ui)2

i=1 Hi

when we try to use “true” uncertainty in the denominator...
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Variable distributions ’im

Least-squares fit (Behnke)
Alternative approach was proposed by J.Neyman in 1949:

Npin 2
2 (ni — i)
o= )
i=1 Hi
when we try to use “true” uncertainty in the denominator...

Unfortunately, this approach also turns out to be biased!

Higher p; values are “preferred”, as they result in smaller x? contribution (for given difference).

Estimate of N obtained from minimization condition, %—’f =0:
N 1
N = N+ 35X
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Variable distributions ’im

Example

Let as consider flat probability distribution again

) Npin (”i B N)Z Npin n2 1 Npin ,
wi=p = X:Z:Z(’—2n;+,u):Zn,-—2N+Nb;n,u
i=1 " -1 \ M ri=

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Variable distributions ’im

Example

Let as consider flat probability distribution again

Npin 2 Npin Npin

2 N (n—p) 2 1
wi=p = X:E — = E 4 —2nj+p :—g ng — 2N+ Npin it
- M =1 \H ]
we then obtain: 2 Nbin
ax 1 5
0= G T T T e
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Variable distributions ’im

Example

Let as consider flat probability distribution again

) Npin (nj — N)Z Npin n2 1 Npin ,
wWi=p = X 227 = Z(’—2n,-+,u) = —Zn,- — 2N + Npin o
- N i1\ mi=
we then obtain: 2 Niin
ax 1 5
and thus: Ny,
1 n
) 2
= n’.
Nbin ;
(%) = (i) = (m*+{(n—(m)*) = u*+pu

which shows that the method results in biased (too high) value of /i
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Variable distributions ’im

Example

Let as consider flat probability distribution again

Npin (n. B N)Z Npin n2 1 Npin
wi=p = X2:Z':Z(’—2n;+u) :—Zn,?—2N+Nb;,,,u
i=1 K i1 \H i
we then obtain: 2 Nin
ax 1 5
and thus: Ny, ,
1 n N X .
A2 2 ~ min
Y n; Bo= + o
Npin ; Npin 2Npin
(p2) = () = (M +((n—(n))?) = ¥’ +n

which shows that the method results in biased (too high) value of /i
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Variable distributions ’im

Maximum Likelihood

The x2 method, while giving (almost) correct results for large n; is clearly not suitable to fit
variable distributions when n; can be small.

Solution is to use general Maximum Likelihood Method, look for parameter values for which
the likelihood function has a (global) maximum.

December 12, 2024
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Variable distributions ’im

Maximum Likelihood

The x2 method, while giving (almost) correct results for large n; is clearly not suitable to fit
variable distributions when n; can be small.

Solution is to use general Maximum Likelihood Method, look for parameter values for which
the likelihood function has a (global) maximum.

We have Np;, independent measurements and each is described by the Poisson probability

distribution. So the likelihood function is:
Nbin Nbin n; —

L= [[P(im) = J[5=— -
i=1 i '
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Variable distributions ’im

Maximum Likelihood

The x2 method, while giving (almost) correct results for large n; is clearly not suitable to fit
variable distributions when n; can be small.

Solution is to use general Maximum Likelihood Method, look for parameter values for which
the likelihood function has a (global) maximum.

We have Np;, independent measurements and each is described by the Poisson probability

distribution. So the likelihood function is:
Nbin Nbin n; —

L= [[P(im) = J[5=— -
i=1 '

i=1

Log-likelihood:

¢ = Z(n;lnu,- — i) — Zlnn,-!

were the last term can be neglected in minimization (constant)
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Variable distributions ’im

Example

For our example of flat distribution, u; =
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Variable distributions ’im

Example

For our example of flat distribution, u; =

s Vi
n!
i=1
¢ = InpY nj = Np— > Innl
14 1
87 = — n; — N = 0
O I

= Mzﬁzni

we obtain an unbiased estimate of the expected value.

A.F.Zarnecki Statictical analysis 11 December 12, 2024




Variable distributions ’im

Maximum Likelihood fit

In the Maximum Likelihood approach, we can use all methods introduced for x? minimization,
one only needs to make substitution

Xz(x;a) — —2/(x; a)
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Variable distributions ’im

Maximum Likelihood fit

In the Maximum Likelihood approach, we can use all methods introduced for x? minimization,
one only needs to make substitution

Xz(x;a) — —2/(x; a)

In the general fit approach:

b:—%vx2(a) — b =Vl@) o b = —
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Variable distributions ’im

Maximum Likelihood fit

In the Maximum Likelihood approach, we can use all methods introduced for x? minimization,
one only needs to make substitution

x?(x; ) — —2/(x; a)
In the general fit approach:
b— -1v %(a) — b =Vla) or b = ot
T VX N SNGET
1 0%y2 0%l
Ay = = Ay = —
Ik 2 0aj Da — Ik Oaj Day
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Variable distributions ’im

Maximum Likelihood fit

In the Maximum Likelihood approach, we can use all methods introduced for x? minimization,
one only needs to make substitution

x?(x; ) — —2/(x; a)
In the general fit approach:
1 ol
b = -2V x?(a) — b =Vl@) or b = 9,
1 0%y 02/
Ay = = — Ay = —
ik 2 0aj Da J Oaj Day
These derivatives can be directly calculated for the Poisson distribution:
Npin Npin
n; Opi ni Opi Opi
b = — -1 and Ay = —
’ ; <ui > 0aj a ; p7 Oaj day
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Variable distributions

Maximum Likelihood fit example

lterative x? fit, using (modified) Pearson approach (o, = /n; + 1)

N=10000

Counts

Binned x? fit Npar=3 x2=104.96 /97 t=2211+ 0.029 us

Time [us]

Statictical analysis 11
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11_binned_fit.ipynb
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_binned_fit.ipynb

Variable distributions ’im

Maximum Likelihood fit example 11_binned_fit2.ipynb

Iterative Maximum Log-Likelihood fit

Binned LL fit Npar =3 LL =54350.50/97 t =2.206 + 0.028 us

Counts

N=10000 Time [us]
Higher background level estimate in likelihood fit (underestimated in x? fit)
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Variable distributions ’im

Maximum Likelihood fit example

lterative x? fit, using (modified) Pearson approach (o, =

n;+1)

Binned x? fit Npar=3 x?=68.23/97 t=2.094 + 0.089 us

102

Counts

0 20 40 60 80 100
Time [us]

N=1000
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Variable distributions -2

Maximum Likelihood fit example

Iterative Maximum Log-Likelihood fit

Binned LL fit Npar=3 LL=3167.90/97 t=2.098 + 0.083 us

102
S0
1k
i
0 20 40 60 80 100
Time [us]

N=1000

Difference between two methods becomes significant for small n;
December 12, 2024
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Variable distributions -2

Maximum Likelihood fit example

lterative x? fit, using (modified) Pearson approach (o, =

n;+1)

Binned x? fit Npar=3 x2?=5.88/17 t=2.002 + 0.369 us

102
ﬂ
o
3 10!
o
10° _|—| r—l_l—l—\
[ 1 [
0 20 40 60 80 100

Time [us]

N=100

Difference between two methods becomes significant for small n;
December 12, 2024
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Variable distributions -2

Maximum Likelihood fit example

Iterative Maximum Log-Likelihood fit

Binned LL fit Npar=3 LL=237.32/17 t=1.935+ 0.336 us

102
2
c
3 10!
o
| lJ_'—|
0 20 40 60 80 100

Time [us]

N=100

Difference between two methods becomes significant for small n;
December 12, 2024
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Statistical analysis of experimental data > .

Variable distributions

e Normalization of the distribution
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Normalization of the distribution ’im

Free normalization

It is quite often the case that normalization of our data sample (total number of registered
events) is one of the (unknown) parameters of our model. We can then present model

expectations as
pi(@) = Afi(a)

where f;(a) is the probability density depending on model parameters a

December 12, 2024
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Normalization of the distribution ’im

Free normalization

It is quite often the case that normalization of our data sample (total number of registered
events) is one of the (unknown) parameters of our model. We can then present model
expectations as

pi(a’) = Afi(a)
where f;(a) is the probability density depending on model parameters a

We can try to maximize log-likelihood with respect to A:

¢ = Y (ninA+niinfi — Af) — > Inn!
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Normalization of the distribution ’im

Free normalization

It is quite often the case that normalization of our data sample (total number of registered
events) is one of the (unknown) parameters of our model. We can then present model
expectations as

pi(a’) = Afi(a)
where f;(a) is the probability density depending on model parameters a

We can try to maximize log-likelihood with respect to A:
¢ = Y (ninA+niinfi — Af) — > Inn!

- XG0 - A

which corresponds to the normalization condition: > u; = > n;

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Normalization of the distribution ’im

Normalization fit

If we do not care for normalization (and its uncertainty) and only want to consider shape of
the distribution, we can reduce number of model parameters by including normalization
condition in the definition of the model function:
N in .
Zj:bl nj

pi@d) = g fid)
K24 fi

December 12, 2024
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Normalization of the distribution
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Normalization fit

If we do not care for normalization (and its uncertainty) and only want to consider shape of
the distribution, we can reduce number of model parameters by including normalization
condition in the definition of the model function:

N .
(@) = Zj:blln n;
I k2 fu

fi(a)

If normalization is not correlated with other model parameters, derivatives of the
normalization term can be neglected in the fit.
If there are correlations, uncertainties on model parameters can be underestimated...
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Normalization of the distribution

Normalization fit example
Example of the likelihood fit including normalization condition

Binned LL fit Npar=2 LL=237.32/18 t=1.935£0.335us

102,
]
c
3 101
O
1o0] | | ] |
0 20 40 60 80 100

Time [us]
Results agree perfectly with the previous fit (with normalization as parameter)
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11_shape_fit.ipynb
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_shape_fit.ipynb

Normalization of the distribution

Normalization fit example
Example of the likelihood fit including normalization condition

Binned LL fit Npar=3 LL=237.32/17 t=1.935£0.336us

102,
]
c
3 101
O
1o0] | | |J_I—|
0 20 40 60 80 100

Time [us]
Old fit, with normalization as parameter

NN
W iy

11_shape_fit.ipynb
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_shape_fit.ipynb

Normalization of the distribution W;im

Normalization constrain

It can also be the case that the normalization of data is known from theory or independent

measurement (eg. luminosity). Let us assume it is known with relative uncertainty A. We can
write the log-likelihood as:

1(s—1)?
{ = Z(n;lns—i—n;lnu; — Suj) — 2(A2)

where s is the factor scaling the nominal model expectations (sp = 1)

A.F.Zarnecki
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Normalization of the distribution W;im

Normalization constrain

It can also be the case that the normalization of data is known from theory or independent

measurement (eg. luminosity). Let us assume it is known with relative uncertainty A. We can
write the log-likelihood as:

1(s— 1)
¢ = Z(n;lns—i—n;lnu; — Spj) — 2( A2)
where s is the factor scaling the nominal model expectations (sp = 1)

We could use general approach to systematic effects, as described before. However, in case of
the normalization systematics, the problem factorizes. We can extract s from derivative:

or 1 s—1

R WED WL =R

AZ

A.F.Zarnecki
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Normalization of the distribution ’im

Normalization constrain

To simplify this formula, let us introduce normalization shift, s =1+ §.

Zni - (1+6)Z,ui - 5(1+5)$ =0

If we now assume that normalization variation is small, § < 1, 62 < §

o= > i = 5<ZM;+A12)
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Normalization of the distribution ’im

Normalization constrain

To simplify this formula, let us introduce normalization shift, s =1+ §.
1

Zni - (1+6)Z,ui - 5(1+5)F =0

If we now assume that normalization variation is small, 6 < 1, §2 < §

Zm—ZMi = 5<ZM;+A12)

5 = Zni B ZMI
S pi+ Az
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Normalization of the distribution ’im

Normalization constrain

To simplify this formula, let us introduce normalization shift, s =1+ §.
1
Zni - (1+6)Z,ui - 5(1+5)F =0

If we now assume that normalization variation is small, 6 < 1, §2 < §
1
S = 6 (S )

i — i ni +
doHi+ Az doui +
This constraint can be included in the model definition as well!

For A — 0 normalization becomes fixed (s = 1)
For A — oo we reproduce “free normalization” result...

By Rl=
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Normalization of the distribution ’im

Normalization constrain

Normalization constrain can also be considered in the x2 minimization:

Npin 2 2
> (ni — sp;) (s—1)
AP P T
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Normalization of the distribution ’im

Normalization constrain

Normalization constrain can also be considered in the x2 minimization:

Npin 2 2
> (ni — sp;) (s—1)
A P

dx? 05 mipi, 2(s —1)
s 2520 —22 Ar =0
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Normalization of the distribution ’im

Normalization constrain

Normalization constrain can also be considered in the x2 minimization:

Npin

2 2
2 (ni — spi) (s—1)
X = Z 2 + A2
i=1 n
X [ nipi | 2(s — 1)
— 2N H o =0
L ay gy e
2
LA N nipi 1
< az,+A2> 20 T
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Normalization of the distribution ’im

Normalization constrain

Normalization constrain can also be considered in the x2 minimization:

Npin

2 2
n; — Spi; s—1
X2:Z(I2I)+(A2)
i=1 ni
ox? I nipi  2(s—1)
- = 2 —_ =2 =0
Os Zo%i Z o T
2
@Y | e, 1
< az,+A2> 2.0 T
Sk
5= /ﬁl 1
2 T a

which reduces to the previous result, if we assume 0,2” = Wi
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Statistical analysis of experimental data > .

Variable distributions

© Unbinned likelihood
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Unbinned likelihood hp

Problem

When defining parameters of the histogram, which will be used to extract parameters of the
variable distribution, we have to be very careful!

Example histogram from P3 exercise (real data), time bin At = 84 ns

1P T
d X2/ ndf183.7 /195

Counts

|

10°

10 |

5 10 15
Time [us]
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Unbinned likelihood > -

Problem

When defining parameters of the histogram, which will be used to extract parameters of the
variable distribution, we have to be very careful!

Example histogram from P3 exercise (real data), time bin At = 100 ns

el A S
s ! | %2/ ndf 716.9/195 | ]
O 4
10? E
10
5 10 15 20
Unexpected effects can be observed with real datal! Time [us]
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Unbinned likelihood >

Unbinned likelihood

We do need the histogram to visualize our data. But we do not need it to extract parameters
of the distribution. We can do it directly from the data.

Likelihood of our data set can be calculated from single events:
N
L = H f(x;;a)
i=1

N
or { = Zlnf(x,-;a)
i=1

when the sum runs over all collected events.

We can then fit parameters by looking for maximum of (log-)likelihood...
We look at the shape of the distribution only (normalization fixed)!
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Unbinned likelihood > -

Example

Very simple example is the decay time measurement.
Let us assume that we measured decay times, t;, of N identical particles.
We know the probability distribution function:

1
f(t) = ; e 7

where the mean lifetime, 7, is the only parameter.
We can write the formula for log-likelihood

N
= nf(t;r) = —n7'—E
E_,Z;I F(ti;7) Z( | T)
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Unbinned likelihood > -

Example

Very simple example is the decay time measurement.
Let us assume that we measured decay times, t;, of N identical particles.
We know the probability distribution function:

1
f(t) = ; e 7

where the mean lifetime, 7, is the only parameter.
We can write the formula for log-likelihood

N N
t
(= Inf(t;7) = —In7— -
> > (=i -7)
ot N 1Y
gr = Tt =0
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Unbinned likelihood > -

Example

Very simple example is the decay time measurement.
Let us assume that we measured decay times, t;, of N identical particles.
We know the probability distribution function:

1
f(t) = ; e 7

where the mean lifetime, 7, is the only parameter.
We can write the formula for log-likelihood

N N
t
(= Inf(t;7) = —In7— -
> > (=i -7)
ot N1 1O
A= DL A A DB
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Unbinned likelihood >

General case

As before, we can use all methods introduced for x? minimization with proper substitution

x?(x; a) — —2/(x; a)

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Unbinned likelihood o

General case

As before, we can use all methods introduced for x? minimization with proper substitution
x2(x; a) — —2{(x; a)

In the general unbinned log-likelihood fit: fi = f(xi)

N
ol 1 0f;
D )

820 N 1 6f of
Ay = B
ik Z )(,-2 8aj 8ak

A.F.Zarnecki
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Variable distributions S

Unbinned likelihood fit example

Iterative binned log-likelihood fit  for comparison

Binned LL fit Npar=3 LL=237.32/17 t=1.935 % 0.336 us

102
4}
c
3 10!
o
| |Ir
0 20 40 60 80 100

Time [us]

N=100

Statictical analysis 11 December 12, 2024
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Variable distributions

11_unbinned_fit.ipynb

Unbinned likelihood fit example

Iterative unbinned log-likelihood fit

Binned LL fit Npar=2 LL=-287.71/98 t=2.651 % 0.336 us

102
4}
c
3 10!
o
10° | |—I_I_
0 20 40 60 80 100

Time [us]

N=100

Very different result!
December 12, 2024

Statictical analysis 11

A.F.Zarnecki


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_unbinned_fit.ipynb

\
N /’/
. ;\\\ s

Variable distributions

11_unbinned_fit.ipynb

Unbinned likelihood fit example
Iterative unbinned log-likelihood fit

Binned LL fit Npar=2 LL=-287.71/98 t=2.651 % 0.336 us

10!

Counts

10°

107!
40 60 80 100

N=100 Time [us]

Very different result! More details “visible” in unbinned fit...

Statictical analysis 11 December 12, 2024
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Variable distributions

11_unbinned_fit.ipynb

Unbinned likelihood fit example
Iterative binned log-likelihood fit  for comparison

Binned LL fit Npar=3 LL=3167.90/97 t=2.098 + 0.083 us

102

Counts

0 20 40 60 80 100

Time [us]

N=1000

December 12, 2024
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Variable distributions

11_unbinned_fit.ipynb

Unbinned likelihood fit example

Iterative unbinned log-likelihood fit

Binned LL fit Npar=2 LL=-2736.39/998 t=2.109 * 0.066 us

102

Counts

I
[ U]

0 20 40 60 80
Time [us]

100

N=1000

Lower parameter uncertainties for unbinned fit (in most cases).
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/11_Variable_distributions/11_unbinned_fit.ipynb

Unbinned likelihood

Extended Maximum Likelihood (Behnke)

“Standard” (unbinned) maximum likelihood fit is sensitive only to the shape of the probability
distribution (normalized by definition).

However, we can extend the likelihood definition to take possible normalization fluctuations
into account:

—
i) = 1o fo,,

where p is the now the expected total number of observed events.

N
Uxi; @) = Ninp — p + Zln f(x;;a) + const
i=1
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Unbinned likelihood >

Extended Maximum Likelihood (Behnke)

When p is independent of @, maximum of the (extended) likelihood corresponds to
p o= N

and we reproduce our previous result.

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Unbinned likelihood

Extended Maximum Likelihood (Behnke)
When p is independent of @, maximum of the (extended) likelihood corresponds to

p o= N
and we reproduce our previous result.

However, we need to use the extended approach, if the total expected number of events
depends on the model parameters

o= p(a)
and so it is related to the shape of the distribution.

If this is the case, extended approach is also required to get a correct estimate of the
parameter uncertainties.
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Statistical analysis of experimental data > .

Variable distributions

e Hypothesis Testing
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Hypothesis Testing =3

Problem

So far, we focused on the problem of extracting model parameters from the collected data
sample. We used maximum likelihood approach (or y? minimization, which is a special case).

A.F.Zarnecki
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Hypothesis Testing 3R

Problem

So far, we focused on the problem of extracting model parameters from the collected data
sample. We used maximum likelihood approach (or y? minimization, which is a special case).

However, what we often want to do is to “make choice”, discriminate between two (or more)
hypothesis based on the collected data.

We already addressed this problem (partially) when discussing limits (lecture 07) and
consistency of the fit (lecture 08).
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Hypothesis Testing 3R

Problem

So far, we focused on the problem of extracting model parameters from the collected data
sample. We used maximum likelihood approach (or y? minimization, which is a special case).

However, what we often want to do is to “make choice”, discriminate between two (or more)
hypothesis based on the collected data.

We already addressed this problem (partially) when discussing limits (lecture 07) and
consistency of the fit (lecture 08).

The general formulation of the problem:
how to discriminate between two model hypothesis Hy and H; based on the collected data D?

Common case:
Hp - Standard Model is valid, H; - SM + additional BSM contribution
D - the whole collected data sample, subset, or a single measurement

A.F.Zarnecki Statictical analysis 11 December 12, 2024
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Example

We can consider measurement of X, where exponential decrease is expected in the SM and
BSM signal is expected to be visible as a peak

Distribution of generated measurements
w

= 1200
>
Q
[&]

1000 l]

800

i
ool
200 [y
e A

0 - L L n
0 02 04 06 08 1 12 14 16 18 2
X [a.ul]

This is a case with very clear separation...
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Hypothesis Testing >

Example

We can consider measurement of X, where exponential decrease is expected in the SM and
BSM signal is expected to be visible as a peak

Distribution of generated measurements
500

400 ].rll'l-rL
300

Counts

N .ll']ﬂL
200 |- Y
100 | "HMU_JT‘“LL‘N
) PP P S SO SO Bt o
0 02 04 06 08 1 12 14 16 18 2

X [a.u]
More difficult when the two distributions overlap
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Hypothesis Testing >

Example

We can consider measurement of X, where exponential decrease is expected in the SM and
BSM signal is expected to be visible as a peak

Distribution of generated measurements

Counts

LRI Tl
) | .” L1 11

Py .
02 04 06 08 1 12 14 16 18 2
X [a.ul]

More difficult when the two distributions overlap and statistics is small...
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Hypothesis Testing SR

Neyman—Pearson Lemma

According to Neymann and Pearson, the optimal, “most powerful” method to discriminate
between the two hypothesis is to look at likelihood ratio

L(D[H1)

R NS

When considering single measurements, making a cut on Q(x) is the optimal way to classify
events. By using likelihood ratio, multi-dimensional measurements (whole events) are also
presented as single number...

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Hypothesis Testing SR

Neyman—Pearson Lemma

According to Neymann and Pearson, the optimal, “most powerful” method to discriminate
between the two hypothesis is to look at likelihood ratio

L(D|Hq

oy — HOIM)

L(D[Ho)
When considering single measurements, making a cut on Q(x) is the optimal way to classify
events. By using likelihood ratio, multi-dimensional measurements (whole events) are also
presented as single number...

When we consider the whole sample of collected data, value of Q(D) is the best discriminant
between the two hypothesis.

Still, one needs to compare the value of Q(D) resulting from the measurement, with the
expected @ distributions for the two hypothesis.
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Hypothesis Testing
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CL; method

This method was introduced at the end of LEP running, when some hints for

Higgs boson
production were observed
o ~ «a ~ .
225 LEP  5=200209Gev Loose 2 5L LEP  5=200209Gev Tight
% 4 Data % 4 Data
O 50 [ [ Backgrouna O 6 [ [ ] Backgrouna
gl I Signal (115 GeV/c?) o« I Signal (115 GeV/c?)
~ ~ |-
| )
- P - 2
= 15 all > 109 GeV/e = all_>109 GeV/e
g Data 119 17 g [|Data 18 4
= Backgd| 1165 158 = Backed| 14 12
10 HHSignal 10 7.1 [{Signal 29 2.2
5 F +
0 + 1 1 L L L 1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
2 2
myrec (GeV/c?) myrec (GeV/cY)
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Hypothesis Testing =3

CL; method

The two hypothesis we consider in this case:
Ho - Standard Model without Higgs contribution - “background” only (b)
H; - SM with Higgs contribution - “signal+background” (s+b)

where we can consider different masses of the Higgs, my

A.F.Zarnecki
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Hypothesis Testing =3

CL; method

The two hypothesis we consider in this case:
Ho - Standard Model without Higgs contribution - “background” only (b)
H; - SM with Higgs contribution - “signal+background” (s+b)

where we can consider different masses of the Higgs, my

Instead of using @, it is more convenient to use

g = —2InQ = —2/(D|H;) +20(D|Hy) = x*(D|H1) — x*(D|Ho)
where:

@ positive g values are expected for data looking more like background only (Hp)

@ negative g values indicate that data are better described by signal+background (H;)

A.F.Zarnecki
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Hypothesis Testing >

CL; method

Value of g from LEP, g4s:, was compared with distribution obtained with multiple Monte
Carlo experiments for my = 115.6 GeV.

.50.14 ;y — ‘O'bs'eryvnld‘ e ’L‘E'PL:
) Eoaea Expected for signal (m,;=115.6 GeV/c")
N F + background
012 F ]
2"
E o1 F ]
S n
"S0.08 ]
X r
0.06 |- ]
0.04 ]
0.02 | ]
0 SN D N O
-15  -10 -5 0 5 % s
-2 In(Q)
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Hypothesis Testing >

CL; method

Value of g from LEP, g4s:, was compared with distribution obtained with multiple Monte
Carlo experiments for my = 115.6 GeV.

VVVV[VVVV[VVVVVVVVVVVVt‘VV¥¥7 .
—— Observed EP | We can define
------ Expected fordsignal (m,;=115.6 (jeV/c") ]

+ backgroun { 400
; Cleyp = / dq f"(q)
q

dat

< indicated as blue area

ob
S S S S .
o S
5]
A

-15 -10 -5 0 5 10 15
-2 In(Q)
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Hypothesis Testing >

CL; method

Value of g from LEP, g4s:, was compared with distribution obtained with multiple Monte
Carlo experiments for my = 115.6 GeV.

a L e B .
-~  — Observed 9
§0.14 O o==--- Exp:,(r:\ted for background LEPf We can deflne
) Foomme Expected for signal (m;=115.6 GeV/c") B
< 012 + background B +o00
= r ] . H1
o1k 1 CLs+b = / dq f (q)
S Y - ]
S r . Qdat
‘§0.08 - 3
o006 b E <« indicated as blue area and compare it with
0.04 3
C ] +oo
0.02 F E
: ; Cly = / dq £7°(q)
q

-15 -10 -5 0 5 10 15 dat

-2 In(Q) < indicated as red is 1 — CL,,

A.F.Zarnecki Statictical analysis 11 December 12, 2024



\
N /’/
. ;\\\ s

Hypothesis Testing

CL; method

Measured and expected g (for two hypothesis) as a function of the assumed Higgs mass.
10 L \
7.5
5
Observed—
2.5 \
o

-2In(Q)

-2.5
-5
The green and yellow bands represent -7.5
the 68% and 95% probability bands 10
about the median background expectation
105 110 115

M,, (GeV)

Looks like we exclude Hp up to mass ~ 118 GeV (Frequentist 97.5%CL)
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Hypothesis Testing

CL; method

Measured and expected g (for two hypothesis) as a function of the assumed Higgs mass.
10 L \
7.5
5
Observed—
2.5 \

-2In(Q)

1]
-2.5
-5
The green and yellow bands represent -7.5
the 68% and 95% probability bands 10
about the median background expectation
105 110 115

M,, (GeV)

Looks like we exclude Hp up to mass ~ 118 GeV (Frequentist 97.5%CL)
But there is almost no difference between expectations for H; and Hy 7!

A.F.Zarnecki Statictical analysis 11 December 12, 2024



Hypothesis Testing
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CL; method
« - . . . . .
§ 7 LEP s-amaweev  Tight | \With tight event selection, LEP experiments observed 4
36l ﬂz‘kgd candidate events with reconstructed mass, m5° > 109GeV/.
o Il Signal (115 GeV/c?)
~ 5 [
< ;
= all >109 GeV/c’
g 4 Hpata 18
= Backgd | 14
3 [|signal 29
, b
b
0 0 M;O 4‘0 60 80 1(‘)0 120

m,rec (GeV/c?)
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Hypothesis Testing -

CL; method

1—a=90% 1—a=95%
n__ M M2 1 M2
0 0.00 244 0.00 3.09
1 011 436 0.05 5.14
2 0.53 591 0.36 6.72
3 110 7.42 082 825
4 147 860 1.37 9.76
5 1.84 999 184 11.26
6 221 11.47 221 1275
7 356 1253 2.58 13.81
8 396 1399 294 15.29
9 436 1530 4.36 16.77
10 5.50 16.50 4.75 17.82

Unified intervals (RPP)

A.F.Zarnecki
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With tight event selection, LEP experiments observed 4
candidate events with reconstructed mass, m5° > 109GeV/.

Expectations of the background only hyposthesis, b = 1.2 is
below 95% CL limit (both Cental and Unified, refer lecture 07)
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Hypothesis Testing -

CL; method

1—a=90% 1—a=95%
n__ M M2 1 M2
0 0.00 244 0.00 3.09
1 011 436 0.05 5.14
2 0.53 591 0.36 6.72
3 110 7.42 082 825
4 147 860 1.37 9.76
5 1.84 999 184 11.26
6 221 11.47 221 1275
7 356 1253 2.58 13.81
8 396 1399 294 15.29
9 436 1530 4.36 16.77
10 5.50 16.50 4.75 17.82

Unified intervals (RPP)

A.F.Zarnecki
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With tight event selection, LEP experiments observed 4
candidate events with reconstructed mass, m5° > 109GeV/.

Expectations of the background only hyposthesis, b = 1.2 is
below 95% CL limit (both Cental and Unified, refer lecture 07)

Does it mean that we can exclude Hpy hypothesis
(Standard Model predictions)?

All we can say is that
“probability of SM reproducing this data is below 5%" ...

But we know that it can still be due to fluctuations...
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Hypothesis Testing SR

CL; method

Experiments at LEP, running with energy up to /s = 210 GeV, could only observe Higgs
bosons with mass of up to about 118 GeV (produced together with Z boson: eTe™ — Z H)

For higher masses, signal+background hypothesis (H;) becomes indistinguishable from
background only one (Hp)

In strictly frequentiest approach we could exclude (on 95%CL) not only the SM, but also all
Higgs scenarios (Hp) with my > 118GeV'!..

Frequentist approach gives us result which is correct (from statistical point of view) but not
very useful for discriminating the two hypothesis! Too sensitive to background fluctuations...
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Hypothesis Testing SR

CL; method

Experiments at LEP, running with energy up to /s = 210 GeV, could only observe Higgs
bosons with mass of up to about 118 GeV (produced together with Z boson: eTe™ — Z H)

For higher masses, signal+background hypothesis (H;) becomes indistinguishable from
background only one (Hp)

In strictly frequentiest approach we could exclude (on 95%CL) not only the SM, but also all
Higgs scenarios (Hp) with my > 118GeV'!..

Frequentist approach gives us result which is correct (from statistical point of view) but not
very useful for discriminating the two hypothesis! Too sensitive to background fluctuations...

Solution is to look for confidence level of H; relative to Hp:
CLs+b
CLp

CLy =
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Hypothesis Testing SR,

CLs; method example

Counting experiment with expected background jip, = 3 and Nyps = 7

Confidence limits for Bg=3.0 N..=7
-

o 1L 1

i —rL,,

0.8 [ N — CLZ °
I — QLS

0.6 :

04 N

02| \ :
5 s !
IS A S A X' __________
0 2 4 6 8 10 12

14
Signal
Probability of background hypothesis to result in N,ps < 7 is 98.8%

= CLg limit on number of signal events is 10.17  (95% CL)
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Hypothesis Testing SR,

CLs; method example

Counting experiment with expected background jip, = 3 and Nyps = 3
Confidence limits for Bg=3.0 MN..=3

3 F ;
1 . - CLs+b
: L o
0.8 - \ E E _ CLS
0.6 \‘
04 \ =
N s
0.2 ok
b N
0 2 PR g 10 12

14
Signal
Probability of background hypothesis to result in Nops < 3 is 64.7%

= CLg limit on number of signal events is 540  (95% CL)
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Hypothesis Testing SR,

CLs; method example

Counting experiment with expected background jip, = 3 and Ngps = 1

—
o

1

0.8

0.6

04 |

0.2

Confidence limits for Bg=3.0 MN..=1

E S T
i E - GLb
;\ ; —CL,
0 4 6 8 10 12

14
Signal

Probability of background hypothesis to result in Nops < 1is 19.9%

= CLg limit on number of signal events is 3.64

A.F.Zarnecki

(95% CL)

Statictical analysis 11

December 12, 2024



Hypothesis Testing SR,

CLs; method example

Counting experiment with expected background jip, = 3 and Nyps = 0
Confidence limits for Bg=3.0 MN..=0

(TI} C :
! : S
) E E - GLb
8 J\ : —CL,
0.6 : \ E
04 f \
02 F :
[ N
o \:
0 2 4 6 g 10 12

Si1g4nal
Probability of background hypothesis to result in N,ps = 0 is 4.98%

= CLg limit on number of signal events is 3.00  (95% CL)
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Hypothesis Testing

CL; method
Final Higgs limits from LEP
In the modified approach, we exclude

w1 e

(at 95% CL) all scenarios with d g

ar

0L

CL; <0.05 :

10 'zg

. - _3: —— Observed
This means that the probability of we Expected for

H; to reproduce the collected data is 0 o hackground ]
less than 5% of the SM probability: i 3
107 ”21':53 ]
P(q > qdat’Hl) < 0.05 P(q > qdat|H0) E 5 E

&

10 100 102 104 106 108 110 112 114 116 118 120

m, (GeV/c?)
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Statistical analysis of experimental data > .

Variable distributions
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Homework Solutions to be uploaded by January 8.
200 events were measured in the electron scattering experiment (data file). Assuming that the
expected distribution corresponds to the Cauchy distribution:

a 1

m 14 (ax)?

use the unbinned likelihood method to extract value of parameter a.

p(x;a) =

Distribution of measurement points
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Homework Solutions to be uploaded by January 8.

200 events were measured in the electron scattering experiment (data file). Assuming that the
expected distribution corresponds to the Cauchy distribution:

a 1

m 1+ (ax)?

use the unbinned likelihood method to extract value of parameter a.

p(x;a) =

Distribution of the measured x values
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http://hep.fuw.edu.pl/u/zarnecki/saed24/11_homework_data_200.dat
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