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Non-linear fit procedure

Iterative procedure (Brandt)

We start from some “initial guess” of parameter values a0.

Assuming small variations of the model parameters, a = a0 + δa, we can expand χ2 in a series:

χ2(a) = χ2(a0)− 2 b · (a− a0) + . . .

where b is the negative gradient of χ2:

b = −1

2
∇ χ2(a0) bj = −1

2

∂χ2

∂aj
=

N∑
i=1

yi − µi

σ2
i

· ∂µi

∂aj

Vector b defines the direction of steepest χ2 descent.
One of the possible procedures is to make a step in this direction:

a1 = a0 + ε b

with small ε > 0 and then repeat the whole procedure...
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Non-linear fit procedure

Iterative procedure (Brandt)

We can try to be “smarter”. Expanding χ2 to quadratic term:

χ2(a) = χ2(a0)− 2 b · (a− a0) + (a− a0)
⊺A(a− a0) + . . .

where A is the so called Hessian matrix of second derivatives:

Ajk =
1

2

∂2χ2

∂aj ∂ak

∣∣∣∣
a=a0

≈
N∑
i=1

1

σ2
i

· ∂µi

∂aj
· ∂µi

∂ak
(neglecting

∂2µi

∂aj ∂ak
)

In this approximation, we can calculate the expected position of the χ2 minimum:

∇ χ2(a) = −2 b + 2 A (a− a0) = 0

⇒ a1 = a0 + A−1b

and we can try to “jump” directly to the minimum...
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Iterative procedure (Brandt)

We can try to be “smarter”. Expanding χ2 to quadratic term:

χ2(a) = χ2(a0)− 2 b · (a− a0) + (a− a0)
⊺A(a− a0) + . . .

where A is the so called Hessian matrix of second derivatives:

Ajk =
1

2

∂2χ2

∂aj ∂ak

∣∣∣∣
a=a0

≈
N∑
i=1

1

σ2
i

· ∂µi

∂aj
· ∂µi

∂ak
(neglecting

∂2µi

∂aj ∂ak
)

In this approximation, we can calculate the expected position of the χ2 minimum:

∇ χ2(a) = −2 b + 2 A (a− a0) = 0

⇒ a1 = a0 + (A+ λ · I)−1 b

or interpolate between “safe” and “fast” approach... Marquardt Minimization
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Constrained fit

Method of Lagrange Multipliers (Behnke)

The method, invented by J.L.Lagrange in 1788, applies to general minimization problem with
additional constraints imposed.

Problem of finding minimum of χ2 (a) with constraints wk(a) = 0 is equivalent to finding a
stationary point (point with all first derivatives at zero) of the Lagrange function:

L(a,λ) = χ2(a) +
∑
k

2λkwk(a)

where we introduce additional K parameters λk - Lagrange multipliers

Our problem is now reduced to finding parameters a and λ fulfilling

∂L
∂aj

= 0 and
∂L
∂λk

= 0

(without any additional constraints)
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Constrained fit

Method of Lagrange Multipliers

We can write these equations the matrix form: A D

D⊺ 0

 ·

 a

λ

 =

 b

c


Ã

where: Ajk =
N∑
i=1

fj(xi ) fk(xi )

σ2
i

, Djk = dk, j and bj =
N∑
i=1

fj(xi ) yi
σ2
i

and the problem can be solved by inverting matrix Ã.

Covariance matrix for a can be extracted as: (seems to work for linear problems)

(Ca)ij = (Ã−1)ij i , j = 1 . . .M
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Including systematic effects

General procedure

General procedure for including systematic uncertainties in the analysis is to consider
corresponding systematic shifts as additional model parameters

µi = µ(xi ; a, s) = µ(xi ; a
′)

χ2(a, s) =
N∑
i=1

(yi − µ(xi , a, s))
2

σ2
i

+
K∑

k=1

(sk − s0, k)
2

σ2
sk

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
K∑

k=1

δ2k δk =
sk − s0, k

σsk

If systematic parameters are not independent (are correlated)

χ2(a′) =
N∑
i=1

(yi − µ(xi , a
′))2

σ2
i

+
∑
k,j

(sk − s0, k)(sj − s0, j) (Cs)
−1
j ,k
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Including systematic effects

General procedure

χ2 minimization procedure is basically unchanged, only the additional terms (systematic
constrains) need to be included in calculations (as for the parameter constraints).
Negative gradient of χ2 uncorrelated systematics

bj = −1

2

∂χ2

∂a′j
=

N∑
i=1

yi − µi

σ2
i

· ∂µi

∂a′j
−

sj − s0, j
σ2
sj

Hessian matrix of second derivatives:

Ajk =
1

2

∂2χ2

∂a′j ∂a
′
k

=
N∑
i=1

1

σ2
i

· ∂µi

∂a′j
· ∂µi

∂a′k
+

δjk
σ2
sk

where systematic shifts s are assumed to go first in a’ (for proper indexing)
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Variable distributions

Problem

So far, we have considered sets of independent measurements of a random variable Y , which
could depend on some controlled variable X (and a number of model parameters a), assuming
measurement fluctuations are described by Gaussian pdf.
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Variable distributions

Problem 11 example data.ipynb

However, the problem frequently met (in high energy physics experiments in particular) is that
we want to extract model parameters not from the fit of Y (X ) dependence, but just from the
distribution of the measured X values. Results are often presented in a form of a histogram:

Example simulation of P3
experiment results
(Advanced Physics Lab)

1000 events
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However, the problem frequently met (in high energy physics experiments in particular) is that
we want to extract model parameters not from the fit of Y (X ) dependence, but just from the
distribution of the measured X values. Results are often presented in a form of a histogram:

Example simulation of P3
experiment results
(Advanced Physics Lab)

10000 events
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Variable distributions

Problem 11 example data2.ipynb

We can consider number of events in each bin of the histogram, ni , as an independent
measurement depending on the controlled variable xi . The only problem we have, to use the
χ2 minimization procedure, is to attribute measurement uncertainties to measured numbers of
events.

Simple guess:
assume σni =

√
ni

works very well for
large ni
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Variable distributions

Problem 11 example data2.ipynb

We can consider number of events in each bin of the histogram, ni , as an independent
measurement depending on the controlled variable xi . The only problem we have, to use the
χ2 minimization procedure, is to attribute measurement uncertainties to measured numbers of
events.

Simple guess:
assume σni =

√
ni

results become
biased when ni
small, problem
with ni = 0
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Variable distributions

Least-squares fit (Behnke)

Considered approach proposed by K.Pearson in 1900:

χ2 =

Nbin∑
i=1

(ni − µi )
2

ni

when we use the property of the Poisson distribution V(ni ) = E(ni ) = µi

Unfortunately, the result of the minimization turns out to be biased!
Let us assume that the model expectations can be presented as

µi = N fi

where N is the total event number and fi represents the probability density (normalized)

Estimate N̂ of N obtained from the minimization condition, ∂χ2

∂a = 0, is biased:

N̂ = N − χ2
min
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Variable distributions

Example

It can be easily demonstrated for the flat distribution

µi ≡ µ ⇒ χ2 =

Nbin∑
i=1

(ni − µ)2

ni
=

Nbin∑
i=1

(
ni − 2µ+

µ2

ni

)
= N − 2Nbin µ+ µ2

Nbin∑
i=1

1

ni

From the minimum condition we obtain:

0 =
∂χ2

∂µ
= −2Nbin + 2µ

Nbin∑
i=1

1

ni
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Variable distributions

Example

It can be easily demonstrated for the flat distribution

µi ≡ µ ⇒ χ2 =

Nbin∑
i=1

(ni − µ)2

ni
=

Nbin∑
i=1

(
ni − 2µ+

µ2

ni

)
= N − 2Nbin µ+ µ2

Nbin∑
i=1

1

ni

From the minimum condition we obtain:

0 =
∂χ2

∂µ
= −2Nbin + 2µ

Nbin∑
i=1

1

ni

We then obtain:

µ̂ =

(
1

Nbin

Nbin∑
i=1

1

ni

)−1

which is harmonic mean of ni (not equal to the expected arithmetic mean)
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Variable distributions

Example

It can be easily demonstrated for the flat distribution

µi ≡ µ ⇒ χ2 =

Nbin∑
i=1

(ni − µ)2

ni
=

Nbin∑
i=1

(
ni − 2µ+

µ2

ni

)
= N − 2Nbin µ+ µ2

Nbin∑
i=1

1

ni

From the minimum condition we obtain:

0 =
∂χ2

∂µ
= −2Nbin + 2µ

Nbin∑
i=1

1

ni

We can use the second relations to remove
∑ 1

n term and obtain:

µ̂ =
N

Nbin
−

χ2
min

Nbin

which confirms that estimate N̂ = Nbin · µ̂ is biased!
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Variable distributions

Least-squares fit (Behnke)
Alternative approach was proposed by J.Neyman in 1949:

χ2 =

Nbin∑
i=1

(ni − µi )
2

µi

when we try to use “true” uncertainty in the denominator...

Unfortunately, this approach also turns out to be biased!

Higher µi values are “preferred”, as they result in smaller χ2 contribution (for given difference).

Estimate of N obtained from minimization condition, ∂χ2

∂a = 0:

N̂ = N +
1

2
χ2
min
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Variable distributions
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Variable distributions

Example

Let as consider flat probability distribution again

µi ≡ µ ⇒ χ2 =

Nbin∑
i=1

(ni − µ)2

µ
=

Nbin∑
i=1

(
n2i
µ

− 2ni + µ

)
=

1

µ

Nbin∑
i=1

n2i − 2N + Nbin µ

we then obtain:
0 =

∂χ2

∂µ
= − 1

µ2

Nbin∑
i=1

n2i + Nbin

and thus:

µ̂2 =
1

Nbin

Nbin∑
i=1

n2i

µ̂ =
N

Nbin
+

χ2
min

2Nbin

⟨µ̂2⟩ = ⟨n2⟩ = ⟨n⟩2 + ⟨(n − ⟨n⟩)2⟩ = µ2 + µ

which shows that the method results in biased (too high) value of µ̂
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Variable distributions

Maximum Likelihood

The χ2 method, while giving (almost) correct results for large ni is clearly not suitable to fit
variable distributions when ni can be small.

Solution is to use general Maximum Likelihood Method, look for parameter values for which
the likelihood function has a (global) maximum.

We have Nbin independent measurements and each is described by the Poisson probability
distribution. So the likelihood function is:

L =

Nbin∏
i=1

P(ni ;µi ) =

Nbin∏
i=1

µni
i e

−µi

n!

Log-likelihood:
ℓ =

∑
(ni lnµi − µi ) −

∑
ln ni !

were the last term can be neglected in minimization (constant)
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Variable distributions

Example

For our example of flat distribution, µi ≡ µ

L =

Nbin∏
i=1

µni e−µ

n!

ℓ = lnµ
∑

ni − N µ −
∑

ln n!

∂ℓ

∂µ
=

1

µ

∑
ni − N = 0

⇒ µ =
1

N

∑
ni

we obtain an unbiased estimate of the expected value.
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Variable distributions

Maximum Likelihood fit

In the Maximum Likelihood approach, we can use all methods introduced for χ2 minimization,
one only needs to make substitution

χ2(x; a) −→ −2ℓ(x; a)

In the general fit approach:

b = −1

2
∇ χ2(a) −→ b = ∇ℓ(a) or bj =

∂ℓ

∂aj

Ajk =
1

2

∂2χ2

∂aj ∂ak
−→ Ajk = − ∂2ℓ

∂aj ∂ak

These derivatives can be directly calculated for the Poisson distribution:

bj =

Nbin∑
i=1

(
ni
µi

− 1

)
∂µi

∂aj
and Ajk =

Nbin∑
i=1

ni
µ2
i

∂µi

∂aj

∂µi

∂ak
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Variable distributions

Maximum Likelihood fit example 11 binned fit.ipynb

Iterative χ2 fit, using (modified) Pearson approach (σni =
√
ni + 1)

N=10000

Higher background level estimate in likelihood fit (underestimated in χ2 fit)
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Variable distributions

Maximum Likelihood fit example 11 binned fit2.ipynb

Iterative Maximum Log-Likelihood fit

N=10000

Higher background level estimate in likelihood fit (underestimated in χ2 fit)
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Variable distributions

Maximum Likelihood fit example

Iterative χ2 fit, using (modified) Pearson approach (σni =
√
ni + 1)

N=1000

Difference between two methods becomes significant for small ni
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Variable distributions
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Statistical analysis of experimental data

Variable distributions

1 Variable distributions

2 Normalization of the distribution

3 Unbinned likelihood

4 Hypothesis Testing

5 Homework
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Normalization of the distribution

Free normalization

It is quite often the case that normalization of our data sample (total number of registered
events) is one of the (unknown) parameters of our model. We can then present model
expectations as

µi (a
′) = A fi (a)

where fi (a) is the probability density depending on model parameters a

We can try to maximize log-likelihood with respect to A:

ℓ =
∑

(ni lnA+ ni ln fi − Afi ) −
∑

ln ni !

∂ℓ

∂A
=

∑(ni
A

− fi

)
⇒ A =

∑
ni∑
fi

which corresponds to the normalization condition:
∑

µi =
∑

ni
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Normalization of the distribution

Normalization fit

If we do not care for normalization (and its uncertainty) and only want to consider shape of
the distribution, we can reduce number of model parameters by including normalization
condition in the definition of the model function:

µi (a) =

∑Nbin
j=1 nj∑Nbin
k=1 fk

fi (a)

If normalization is not correlated with other model parameters, derivatives of the
normalization term can be neglected in the fit.
If there are correlations, uncertainties on model parameters can be underestimated...
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Normalization of the distribution

Normalization fit example 11 shape fit.ipynb

Example of the likelihood fit including normalization condition

Results agree perfectly with the previous fit (with normalization as parameter)
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Normalization of the distribution

Normalization fit example 11 shape fit.ipynb

Example of the likelihood fit including normalization condition

Old fit, with normalization as parameter
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Normalization of the distribution

Normalization constrain

It can also be the case that the normalization of data is known from theory or independent
measurement (eg. luminosity). Let us assume it is known with relative uncertainty ∆. We can
write the log-likelihood as:

ℓ =
∑

(ni ln s + ni lnµi − sµi ) − 1

2

(s − 1)2

∆2

where s is the factor scaling the nominal model expectations (s0 = 1)

We could use general approach to systematic effects, as described before. However, in case of
the normalization systematics, the problem factorizes. We can extract s from derivative:

∂ℓ

∂s
=

1

s

∑
ni −

∑
µi − s − 1

∆2
= 0
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Normalization of the distribution

Normalization constrain

To simplify this formula, let us introduce normalization shift, s = 1 + δ.∑
ni − (1 + δ)

∑
µi − δ(1 + δ)

1

∆2
= 0

If we now assume that normalization variation is small, δ ≪ 1, δ2 ≪ δ∑
ni −

∑
µi = δ

(∑
µi +

1

∆2

)

δ =

∑
ni −

∑
µi∑

µi +
1
∆2

⇒ s = 1 + δ =

∑
ni + 1

∆2∑
µi + 1

∆2

This constraint can be included in the model definition as well!
For ∆ → 0 normalization becomes fixed (s ≡ 1)
For ∆ → ∞ we reproduce “free normalization” result...
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Normalization of the distribution

Normalization constrain

Normalization constrain can also be considered in the χ2 minimization:

χ2 =

Nbin∑
i=1

(ni − sµi )
2

σ2
ni

+
(s − 1)2

∆2

∂χ2

∂s
= 2s

∑ µ2
i

σ2
ni

− 2
∑ niµi

σ2
ni

+
2(s − 1)

∆2
= 0

s

(∑ µ2
i

σ2
ni

+
1

∆2

)
=

∑ niµi

σ2
ni

+
1

∆2

s =

∑ niµi

σ2
ni

+ 1
∆2∑ µ2

i
σ2
ni

+ 1
∆2

which reduces to the previous result, if we assume σ2
ni
= µi
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Statistical analysis of experimental data

Variable distributions

1 Variable distributions

2 Normalization of the distribution

3 Unbinned likelihood

4 Hypothesis Testing

5 Homework
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Unbinned likelihood

Problem

When defining parameters of the histogram, which will be used to extract parameters of the
variable distribution, we have to be very careful!

Example histogram from P3 exercise (real data), time bin ∆t = 84 ns

Unexpected effects can be observed with real data!
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Unbinned likelihood

Problem

When defining parameters of the histogram, which will be used to extract parameters of the
variable distribution, we have to be very careful!

Example histogram from P3 exercise (real data), time bin ∆t = 100 ns

Unexpected effects can be observed with real data!
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Unbinned likelihood

Unbinned likelihood

We do need the histogram to visualize our data. But we do not need it to extract parameters
of the distribution. We can do it directly from the data.

Likelihood of our data set can be calculated from single events:

L =
N∏
i=1

f (xi ; a)

or ℓ =
N∑
i=1

ln f (xi ; a)

when the sum runs over all collected events.

We can then fit parameters by looking for maximum of (log-)likelihood...
We look at the shape of the distribution only (normalization fixed)!
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Unbinned likelihood

Example

Very simple example is the decay time measurement.
Let us assume that we measured decay times, ti , of N identical particles.
We know the probability distribution function:

f (t) =
1

τ
e−

t
τ

where the mean lifetime, τ , is the only parameter.
We can write the formula for log-likelihood

ℓ =
N∑
i=1

ln f (ti ; τ) =
N∑
i=1

(
− ln τ − ti

τ

)

∂ℓ

∂τ
= −N

τ
+

1

τ2

N∑
i=1

ti = 0 ⇒ τ =
1

N

N∑
i=1

ti
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Unbinned likelihood

General case

As before, we can use all methods introduced for χ2 minimization with proper substitution

χ2(x; a) −→ −2ℓ(x; a)

In the general unbinned log-likelihood fit: fi = f (xi )

bj =
∂ℓ

∂aj
=

N∑
i=1

1

fi

∂fi
∂aj

Ajk = − ∂2ℓ

∂aj ∂ak
=

N∑
i=1

1

f 2i

∂fi
∂aj

∂fi
∂ak
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Variable distributions

Unbinned likelihood fit example

Iterative binned log-likelihood fit for comparison

N=100

Very different result! More details “visible” in unbinned fit...
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Variable distributions

Unbinned likelihood fit example 11 unbinned fit.ipynb

Iterative unbinned log-likelihood fit

N=100
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Variable distributions

Unbinned likelihood fit example 11 unbinned fit.ipynb

Iterative binned log-likelihood fit for comparison

N=1000

Lower parameter uncertainties for unbinned fit (in most cases).
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Variable distributions

Unbinned likelihood fit example 11 unbinned fit.ipynb

Iterative unbinned log-likelihood fit

N=1000

Lower parameter uncertainties for unbinned fit (in most cases).
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Unbinned likelihood

Extended Maximum Likelihood (Behnke)

“Standard” (unbinned) maximum likelihood fit is sensitive only to the shape of the probability
distribution (normalized by definition).

However, we can extend the likelihood definition to take possible normalization fluctuations
into account:

L(xi ;µ, a) =
µNe−µ

N!

N∏
i=1

f (xi ; a)

where µ is the now the expected total number of observed events.

ℓ(xi ;µ, a) = N lnµ − µ +
N∑
i=1

ln f (xi ; a) + const
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Unbinned likelihood

Extended Maximum Likelihood (Behnke)

When µ is independent of a, maximum of the (extended) likelihood corresponds to

µ = N

and we reproduce our previous result.

However, we need to use the extended approach, if the total expected number of events
depends on the model parameters

µ → µ(a)

and so it is related to the shape of the distribution.

If this is the case, extended approach is also required to get a correct estimate of the
parameter uncertainties.
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Statistical analysis of experimental data

Variable distributions

1 Variable distributions

2 Normalization of the distribution

3 Unbinned likelihood

4 Hypothesis Testing

5 Homework
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Hypothesis Testing

Problem

So far, we focused on the problem of extracting model parameters from the collected data
sample. We used maximum likelihood approach (or χ2 minimization, which is a special case).

However, what we often want to do is to “make choice”, discriminate between two (or more)
hypothesis based on the collected data.

We already addressed this problem (partially) when discussing limits (lecture 07) and
consistency of the fit (lecture 08).

The general formulation of the problem:
how to discriminate between two model hypothesis H0 and H1 based on the collected data D?

Common case:
H0 - Standard Model is valid, H1 - SM + additional BSM contribution
D - the whole collected data sample, subset, or a single measurement
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Hypothesis Testing

Example

We can consider measurement of X , where exponential decrease is expected in the SM and
BSM signal is expected to be visible as a peak

This is a case with very clear separation...
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Hypothesis Testing

Example

We can consider measurement of X , where exponential decrease is expected in the SM and
BSM signal is expected to be visible as a peak

More difficult when the two distributions overlap and statistics is small...
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Hypothesis Testing

Neyman–Pearson Lemma

According to Neymann and Pearson, the optimal, “most powerful” method to discriminate
between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)

When considering single measurements, making a cut on Q(x) is the optimal way to classify
events. By using likelihood ratio, multi-dimensional measurements (whole events) are also
presented as single number...

When we consider the whole sample of collected data, value of Q(D) is the best discriminant
between the two hypothesis.

Still, one needs to compare the value of Q(D) resulting from the measurement, with the
expected Q distributions for the two hypothesis.
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expected Q distributions for the two hypothesis.
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Hypothesis Testing

CLs method

This method was introduced at the end of LEP running, when some hints for Higgs boson
production were observed
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A.F.Żarnecki Statictical analysis 11 December 12, 2024 42 / 54



Hypothesis Testing

CLs method

The two hypothesis we consider in this case:
H0 - Standard Model without Higgs contribution - “background” only (b)
H1 - SM with Higgs contribution - “signal+background” (s+b)

where we can consider different masses of the Higgs, mH

Instead of using Q, it is more convenient to use

q = −2 lnQ = −2ℓ(D|H1) + 2ℓ(D|H0) = χ2(D|H1)− χ2(D|H0)

where:

positive q values are expected for data looking more like background only (H0)

negative q values indicate that data are better described by signal+background (H1)
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Hypothesis Testing

CLs method

Value of q from LEP, qdat , was compared with distribution obtained with multiple Monte
Carlo experiments for mH = 115.6 GeV.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-15 -10 -5 0 5 10 15

-2 ln(Q)

P
ro

ba
bi

lit
y 

de
ns

it
y

Observed

Expected for signal (mH=115.6 GeV/c2)
+ background

LEP

We can define

CLs+b =

∫ +∞

qdat

dq f H1(q)

⇐ indicated as blue area and compare it with

CLb =

∫ +∞

qdat

dq f H0(q)

⇐ indicated as red is 1− CLb
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Hypothesis Testing

CLs method

Measured and expected q (for two hypothesis) as a function of the assumed Higgs mass.
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The green and yellow bands represent
the 68% and 95% probability bands
about the median background expectation

Looks like we exclude H0 up to mass ∼ 118 GeV (Frequentist 97.5%CL)

But there is almost no difference between expectations for H1 and H0 ?!
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Hypothesis Testing

CLs method
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With tight event selection, LEP experiments observed 4
candidate events with reconstructed mass, mrec

H > 109GeV .

Expectations of the background only hyposthesis, b = 1.2 is
below 95% CL limit (both Cental and Unified, refer lecture 07)

Does it mean that we can exclude H0 hypothesis
(Standard Model predictions)?

All we can say is that
“probability of SM reproducing this data is below 5%”...

But we know that it can still be due to fluctuations...
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Hypothesis Testing

CLs method

Unified intervals (RPP)
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Hypothesis Testing

CLs method

Experiments at LEP, running with energy up to
√
s = 210 GeV, could only observe Higgs

bosons with mass of up to about 118 GeV (produced together with Z boson: e+e− → Z H)

For higher masses, signal+background hypothesis (H1) becomes indistinguishable from
background only one (H0)

In strictly frequentiest approach we could exclude (on 95%CL) not only the SM, but also all
Higgs scenarios (H1) with mH > 118GeV !..

Frequentist approach gives us result which is correct (from statistical point of view) but not
very useful for discriminating the two hypothesis! Too sensitive to background fluctuations...

Solution is to look for confidence level of H1 relative to H0:

CLs =
CLs+b

CLb

A.F.Żarnecki Statictical analysis 11 December 12, 2024 47 / 54



Hypothesis Testing

CLs method

Experiments at LEP, running with energy up to
√
s = 210 GeV, could only observe Higgs

bosons with mass of up to about 118 GeV (produced together with Z boson: e+e− → Z H)

For higher masses, signal+background hypothesis (H1) becomes indistinguishable from
background only one (H0)

In strictly frequentiest approach we could exclude (on 95%CL) not only the SM, but also all
Higgs scenarios (H1) with mH > 118GeV !..

Frequentist approach gives us result which is correct (from statistical point of view) but not
very useful for discriminating the two hypothesis! Too sensitive to background fluctuations...

Solution is to look for confidence level of H1 relative to H0:

CLs =
CLs+b

CLb
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 7

Probability of background hypothesis to result in Nobs ≤ 7 is 98.8%

⇒ CLs limit on number of signal events is 10.17 (95% CL)
almost the same as the Frequentist limit (CLs+b): 10.15
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 3

Probability of background hypothesis to result in Nobs ≤ 3 is 64.7%

⇒ CLs limit on number of signal events is 5.40 (95% CL)
only slightly higher than the Frequentist limit (CLs+b): 4.75
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 1

Probability of background hypothesis to result in Nobs ≤ 1 is 19.9%

⇒ CLs limit on number of signal events is 3.64 (95% CL)
significantly higher than the Frequentist limit (CLs+b): 1.74
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Hypothesis Testing

CLs method example

Counting experiment with expected background µbg = 3 and Nobs = 0

Probability of background hypothesis to result in Nobs = 0 is 4.98%

⇒ CLs limit on number of signal events is 3.00 (95% CL)
while all signal hypothesis are excluded in Frequentist approach (CLs+b)!
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Hypothesis Testing

CLs method

In the modified approach, we exclude
(at 95% CL) all scenarios with

CLs < 0.05

This means that the probability of
H1 to reproduce the collected data is
less than 5% of the SM probability:

P(q > qdat |H1) < 0.05 P(q > qdat |H0)

Final Higgs limits from LEP
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Statistical analysis of experimental data

Variable distributions

1 Variable distributions

2 Normalization of the distribution

3 Unbinned likelihood

4 Hypothesis Testing

5 Homework
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Homework

Homework Solutions to be uploaded by January 8.

200 events were measured in the electron scattering experiment (data file). Assuming that the
expected distribution corresponds to the Cauchy distribution:

p(x ; a) =
a

π
· 1

1 + (a x)2

use the unbinned likelihood method to extract value of parameter a.

A.F.Żarnecki Statictical analysis 11 December 12, 2024 54 / 54

http://hep.fuw.edu.pl/u/zarnecki/saed24/11_homework_data_200.dat


Homework

Homework Solutions to be uploaded by January 8.

200 events were measured in the electron scattering experiment (data file). Assuming that the
expected distribution corresponds to the Cauchy distribution:

p(x ; a) =
a

π
· 1

1 + (a x)2

use the unbinned likelihood method to extract value of parameter a.
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