
Statistical analysis of experimental data
Machine Learning

Aleksander Filip Żarnecki

Lecture 13
January 16, 2025

A.F.Żarnecki Statictical analysis 13 January 16, 2025 1 / 51



Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 2 / 51



Event classification

Problem definition

The problem is similar to the one discussed in lecture 10: we want to discriminate between two
model hypothesis H0 and H1 based on the collected data D.

Different case - classification of collected measurements:

H0 - measurement can be attributed to the Standard Model (background),

H1 - measurement is due to BSM contribution (signal),

D - single measurement (“event” in HEP experiments)

According to Neymann and Pearson, the optimal, “most powerful” method to discriminate
between the two hypothesis is to look at likelihood ratio

Q(D) =
L(D|H1)

L(D|H0)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 3 / 51



Event classification

Classification errors O.Behnke et. al, Data Analysis in High Enegy Physics

Selecting the classification criteria (cut), two types of error need to be considered

Probability of accepting fake Probability of rejecting good

α =

∫
accepted

dx p(x |H0) β =

∫
rejected

dx p(x |H1)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 4 / 51



Event classification

Simple example

Discriminator function distribution expect y → −1 for fake coin, y → +1 for good coin

A.F.Żarnecki Statictical analysis 13 January 16, 2025 5 / 51



Event classification

ROC curve
For both good and fake coins, efficiency depends on the assumed ycut value.
All possible choices on a Receiver-Operating-Characteristic curve:

In the realistic case, we can not have α → 0 and β → 0 at the same time...
Optimal cut value strongly depends on the actual goal of the analysis...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 6 / 51

1− α

1− β



Fisher Linear Discriminant

Linear discriminant (Behnke)

Classifier based on the linear combination of input variables:

F (x;w) = w0 +
N∑
j=1

wj xj = w0 + w · x

Resulting decision boundaries, F (x) = Fcut , are hyperplanes in N dim.

Weight vector w defines the direction, on which all events are projected.
Projection “reduces” the N variable problem to single variable F (x).

If we assume Gaussian variable distributions, we can look at the direction which maximizes the
relative distance between the two hypothesis in F :

D(w) =
(h1 − h0)

2

σ2
1 + σ2

0

hk and σ2
k are the expected values and variances of F (x) for hypothesis k .
A.F.Żarnecki Statictical analysis 13 January 16, 2025 7 / 51



Fisher Linear Discriminant

Linear discriminant (Behnke)

Classifier based on the linear combination of input variables:

F (x;w) = w0 +
N∑
j=1

wj xj = w0 + w · x

Resulting decision boundaries, F (x) = Fcut , are hyperplanes in N dim.

Weight vector w defines the direction, on which all events are projected.
Projection “reduces” the N variable problem to single variable F (x).

However, the problem can be also solved without looking at the global properties, by
minimizing the “loss function”. Possible choice, “distance”:

L(w) =
∑

events i

[
t(i) − y(F (x(i);w))

]2
where y is the “activation function”, t(i) is the true class of event x(i).

A.F.Żarnecki Statictical analysis 13 January 16, 2025 7 / 51



Iterative procedure

Activation function

Source: Artificial Intelligence Wiki
A.F.Żarnecki Statictical analysis 13 January 16, 2025 8 / 51

https://machine-learning.paperspace.com/wiki/activation-function


Iterative procedure

Perceptron Learning “Learning on errors”

One can consider the iterative procedure of adjusting the weights:

w(n+1) = w(n) − η
∑
i

(
y (i) − t(i)

)
· x(i)

where η is the learning rate parameter.

Events which are incorrectly classified contribute most to loss function.
They also have largest impact in the weigh adjustment procedure...

This approach was first proposed by M. Rosenblatt in 1958.

Weight correction can be applied on event by event basis (starting from the beginning when
event loop completed) or calculating global correction for the whole sample.

Surprisingly, with proper choice of η this procedure works, results in classification optimization,
even without referring to the loss function...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 9 / 51



Iterative procedure

Perceptron Learning example

Example results for linear discriminant, starting from random weights:

Iterative procedure (solid magenta) compared with Fisher discriminant (dashed red)
A.F.Żarnecki Statictical analysis 13 January 16, 2025 10 / 51



Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 11 / 51



Artificial Neural Networks

Linear discriminant Single percepton training

Linear discriminant is quite effective for separation of two Gaussian samples, but clearly not
optimal for more complicated cases

Can we do better?
A.F.Żarnecki Statictical analysis 13 January 16, 2025 12 / 51



Artificial Neural Networks

Single percepton

We can present the data flow in as a simple diagram:

1 2x x

1

y Classification is based on the output y of the
activation function.

Activation function is calculated for a linear
combination of three inputs:

two input variables, x1 and x2

constant offset (1)

Input weights can be found in the iterative “learning procedure”

w(n+1) = w(n) − η
∑
events

(
y (i) − t(i)

)
· x(i)

But single linear combination always results in a linear decision boundary...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 13 / 51



Artificial Neural Networks

Single percepton

We can present the data flow in as a simple diagram:

1 2x x

1

y Classification is based on the output y of the
activation function.

Activation function is calculated for a linear
combination of three inputs:

two input variables, x1 and x2

constant offset (1)

Input weights can be found in the iterative “learning procedure”

But single linear combination always results in a linear decision boundary...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 13 / 51



Artificial Neural Networks

Two perceptons

We can try to train two independent classifiers:

21

1 2

xx
1

y y

If starting from random initial weights, training results could be different...

But how to combine them?

A.F.Żarnecki Statictical analysis 13 January 16, 2025 14 / 51



Artificial Neural Networks

Two percepton layers

It seems quite natural to add additional percepton to combine the two...

Output-layer neuron:

y = f

w
(1)
0 +

2∑
j=1

w
(1)
j hj


Hidden-layer neuron:

hj = f

(
w

(2)
j ,0 +

2∑
k=1

w
(2)
j ,k xk

)

⇒ nine independent weights
one for each arrow

21

1 2

xx

h h

1

1

y

A.F.Żarnecki Statictical analysis 13 January 16, 2025 15 / 51



Artificial Neural Networks

Learning rules Miroslav Kubat, An Introduction to Machine Learning

Backpropagation of Errors: contribution of event i to the weight-adjusting procedure is
proportional to the classification error:

δ
(1)
i = (yi − ti )

(1− yi ) (1 + yi )

Additional factor reduces impact of “well classified” events, y → ±1
⇒ we focus on those for which classification was “weak”, yi ∼ 0.

For the output layer neurons, we can apply procedure similar to the percepton learning:

w(1)(n+1) = w(1)(n) − η
∑
i

δ
(1)
i · hi

where hi is the vector of hidden layer results + offset

A.F.Żarnecki Statictical analysis 13 January 16, 2025 16 / 51



Artificial Neural Networks

Learning rules Miroslav Kubat, An Introduction to Machine Learning

Backpropagation of Errors: contribution of event i to the weight-adjusting procedure is
proportional to the classification error:

δ
(1)
i = (yi − ti ) (1− yi ) (1 + yi )

Additional factor reduces impact of “well classified” events, y → ±1
⇒ we focus on those for which classification was “weak”, yi ∼ 0.

For the output layer neurons, we can apply procedure similar to the percepton learning:

w(1)(n+1) = w(1)(n) − η
∑
i

δ
(1)
i · hi

where hi is the vector of hidden layer results + offset

A.F.Żarnecki Statictical analysis 13 January 16, 2025 16 / 51



Artificial Neural Networks

Learning rules Miroslav Kubat, An Introduction to Machine Learning

Backpropagation of Errors: contribution of event i to the weight-adjusting procedure is
proportional to the classification error:

δ
(1)
i = (yi − ti ) (1− yi ) (1 + yi )

Additional factor reduces impact of “well classified” events, y → ±1
⇒ we focus on those for which classification was “weak”, yi ∼ 0.

For the output layer neurons, we can apply procedure similar to the percepton learning:

w(1)(n+1) = w(1)(n) − η
∑
i

δ
(1)
i · hi

where hi is the vector of hidden layer results + offset

A.F.Żarnecki Statictical analysis 13 January 16, 2025 16 / 51



Artificial Neural Networks

Learning rules

For hidden layer, we need to define the corresponding “error” for each node j .
We “back propagate” it for each event from the output node:

δ
(2)
j ,i = w

(1)
j δ

(1)
i (1− hj ,i ) (1 + hj ,i )

where we include weight w
(1)
j connecting given node to output neuron.

Again, we suppress impact of events with “strong opinion”.

Weight update rule for hidden layer neurons:

w
(2)(n+1)
j = w

(2)(n)
j − η

∑
i

δ
(2)
j ,i · xi

Iterative procedure, starting from random weights:

calculate yi for train sample events ⇒ extract δ
(1)
i and δ

(2)
j ,i

update w(1) and w
(2)
j , decrease η, repeat from the beginning

A.F.Żarnecki Statictical analysis 13 January 16, 2025 17 / 51



Artificial Neural Networks

Learning rules

For hidden layer, we need to define the corresponding “error” for each node j .
We “back propagate” it for each event from the output node:

δ
(2)
j ,i = w

(1)
j δ

(1)
i (1− hj ,i ) (1 + hj ,i )

where we include weight w
(1)
j connecting given node to output neuron.

Again, we suppress impact of events with “strong opinion”.

Weight update rule for hidden layer neurons:

w
(2)(n+1)
j = w

(2)(n)
j − η

∑
i

δ
(2)
j ,i · xi

Iterative procedure, starting from random weights:

calculate yi for train sample events ⇒ extract δ
(1)
i and δ

(2)
j ,i

update w(1) and w
(2)
j , decrease η, repeat from the beginning

A.F.Żarnecki Statictical analysis 13 January 16, 2025 17 / 51



Artificial Neural Networks

Learning rules

For hidden layer, we need to define the corresponding “error” for each node j .
We “back propagate” it for each event from the output node:

δ
(2)
j ,i = w

(1)
j δ

(1)
i (1− hj ,i ) (1 + hj ,i )

where we include weight w
(1)
j connecting given node to output neuron.

Again, we suppress impact of events with “strong opinion”.

Weight update rule for hidden layer neurons:

w
(2)(n+1)
j = w

(2)(n)
j − η

∑
i

δ
(2)
j ,i · xi

Iterative procedure, starting from random weights:

calculate yi for train sample events ⇒ extract δ
(1)
i and δ

(2)
j ,i

update w(1) and w
(2)
j , decrease η, repeat from the beginning

A.F.Żarnecki Statictical analysis 13 January 16, 2025 17 / 51



Artificial Neural Networks

Simplest case 13 NN.ipynb

Simplest network: one hidden layer with two preceptons...
Visible improvement in efficiency and flexibility of classification!

Correlation for signal sample ρ = 0
A.F.Żarnecki Statictical analysis 13 January 16, 2025 18 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

Simplest case 13 NN.ipynb

Simplest network: one hidden layer with two preceptons...
Visible improvement in efficiency and flexibility of classification!

Correlation for signal sample ρ = 0.7
A.F.Żarnecki Statictical analysis 13 January 16, 2025 18 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

Simplest case 13 NN.ipynb

Simplest network: one hidden layer with two preceptons...
Visible improvement in efficiency and flexibility of classification!

Correlation for signal sample ρ = −0.7
A.F.Żarnecki Statictical analysis 13 January 16, 2025 18 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

More complex case

We can have arbitrary number of neurons in hidden layer...

N1

1 2 M

1
xx

y

1 h h h

as well as more input variables...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 19 / 51



Artificial Neural Networks

More complex case 13 NN.ipynb

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 20 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

More complex case 13 NN.ipynb

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 20 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

More complex case 13 NN.ipynb

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 20 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

More complex case 13 NN.ipynb

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 20 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

More complex case 13 NN.ipynb

Classification improves with the number of nodes in the hidden layer.
Learning takes a little bit longer, but we can gain a lot... for simple distribution...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 20 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NN.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Not much gain going above 10 nodes in hidden layer...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Not much gain going above 10 nodes in hidden layer...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Not much gain going above 10 nodes in hidden layer...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

One hidden layer only - limited shape flexibility

Not much gain going above 10 nodes in hidden layer...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 21 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Two hidden layer - more shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 22 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Two hidden layer - more shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 22 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Two hidden layer - more shape flexibility

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 22 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Two hidden layer - more shape flexibility

Much better modeling of the signal distribution...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 22 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Two hidden layer - more shape flexibility

Much better modeling of the signal distribution...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 22 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Three hidden layer - more details can be included

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 23 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Three hidden layer - more details can be included

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 23 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Three hidden layer - more details can be included

Multi-layer Perceptron classifier class from sklearn
A.F.Żarnecki Statictical analysis 13 January 16, 2025 23 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Multilayer example 13 NNsk.ipynb

Three hidden layer - more details can be included

Different numbers of nodes in different layers possible...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 23 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_NNsk.ipynb


Artificial Neural Networks

Comparison of the output discriminator function distribution

Single hidden layer with 20 neurons

clear improvement of the event classification

A.F.Żarnecki Statictical analysis 13 January 16, 2025 24 / 51



Artificial Neural Networks

Comparison of the output discriminator function distribution

Two hidden layers, with 10 neurons each

clear improvement of the event classification

A.F.Żarnecki Statictical analysis 13 January 16, 2025 24 / 51



Artificial Neural Networks

Comparison of the output discriminator function distribution

Three hidden layers, with 20, 5 and 2 neurons clear improvement of the event classification

A.F.Żarnecki Statictical analysis 13 January 16, 2025 24 / 51



Artificial Neural Networks

sklearn tips... https://scikit-learn.org/

Multi-layer perceptron is sensitive to variable scales.

It is highly recommended to scale input data, so each variable has the same range
(eg. [−1,+1]) or same mean and variance (eg. µ = 0 and σ = 1).
Both training and test samples need to be scaled in the same way!

Different, more advanced learning algorithms are implemented in sklearn, one can choose
between them with ’solver’ parameter.

’lbfgs’ converges faster and with better solutions on small datasets.

For relatively large datasets, ’adam’ is very robust.
It usually converges quickly and gives pretty good performance.

’sgd’ can perform best if learning rate is correctly tuned.

A.F.Żarnecki Statictical analysis 13 January 16, 2025 25 / 51

https://scikit-learn.org/dev/modules/generated/sklearn.neural_network.MLPClassifier.html


Artificial Neural Networks

sklearn tips... https://scikit-learn.org/

Multi-layer perceptron is sensitive to variable scales.

It is highly recommended to scale input data, so each variable has the same range
(eg. [−1,+1]) or same mean and variance (eg. µ = 0 and σ = 1).
Both training and test samples need to be scaled in the same way!

Different, more advanced learning algorithms are implemented in sklearn, one can choose
between them with ’solver’ parameter.

’lbfgs’ converges faster and with better solutions on small datasets.

For relatively large datasets, ’adam’ is very robust.
It usually converges quickly and gives pretty good performance.

’sgd’ can perform best if learning rate is correctly tuned.

A.F.Żarnecki Statictical analysis 13 January 16, 2025 25 / 51

https://scikit-learn.org/dev/modules/generated/sklearn.neural_network.MLPClassifier.html


Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 26 / 51



Boosting

Ensemble methods

It is relatively easy (in most cases) to design a classification algorithm which will result in the
classification efficiency (fraction of correct classifications) slightly above 50% (random
classification level).

Such classifiers are called “weak classifiers”

It is much more difficult (in most realistic cases) to design a single classifier, which will result
in efficiency close to 100% (error-less classification).

Such classifiers are called “strong classifiers”

However, it turns out that one can build a strong classifier from many weak classifiers!

This is the underlying principle in many machine learning techniques...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 27 / 51



Boosting

Ensemble methods

It is relatively easy (in most cases) to design a classification algorithm which will result in the
classification efficiency (fraction of correct classifications) slightly above 50% (random
classification level).

Such classifiers are called “weak classifiers”

It is much more difficult (in most realistic cases) to design a single classifier, which will result
in efficiency close to 100% (error-less classification).

Such classifiers are called “strong classifiers”

However, it turns out that one can build a strong classifier from many weak classifiers!

This is the underlying principle in many machine learning techniques...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 27 / 51



Boosting

Ensemble methods

It is relatively easy (in most cases) to design a classification algorithm which will result in the
classification efficiency (fraction of correct classifications) slightly above 50% (random
classification level).

Such classifiers are called “weak classifiers”

It is much more difficult (in most realistic cases) to design a single classifier, which will result
in efficiency close to 100% (error-less classification).

Such classifiers are called “strong classifiers”

However, it turns out that one can build a strong classifier from many weak classifiers!

This is the underlying principle in many machine learning techniques...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 27 / 51



Boosting

Example weak discriminant 13 Weak.ipynb

Generate Ntry = 100 random linear discriminants. Select the one with the highest efficiency
(highest number of properly classified events).

This is clearly a weak discriminant (for this example ε ∼ 60%)
A.F.Żarnecki Statictical analysis 13 January 16, 2025 28 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Weak.ipynb


Boosting

Ensemble methods https://scikit-learn.org/

Two families of ensemble methods are usually distinguished:

In averaging methods, the driving principle is to build several estimators independently
and then to average their predictions.
On average, the combined estimator is usually better than any of the single base
estimator because its variance is reduced.

In boosting methods, base estimators are built sequentially and one tries to reduce the
bias of the combined estimator. The motivation is to combine several weak models to
produce a powerful ensemble.

The two methods can also be combined...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 29 / 51

https://scikit-learn.org/dev/modules/ensemble.html


Boosting

Ensemble methods https://scikit-learn.org/

Two families of ensemble methods are usually distinguished:

In averaging methods, the driving principle is to build several estimators independently
and then to average their predictions.
On average, the combined estimator is usually better than any of the single base
estimator because its variance is reduced.

In boosting methods, base estimators are built sequentially and one tries to reduce the
bias of the combined estimator. The motivation is to combine several weak models to
produce a powerful ensemble.

The two methods can also be combined...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 29 / 51

https://scikit-learn.org/dev/modules/ensemble.html


Boosting

Ensemble methods https://scikit-learn.org/

Two families of ensemble methods are usually distinguished:

In averaging methods, the driving principle is to build several estimators independently
and then to average their predictions.
On average, the combined estimator is usually better than any of the single base
estimator because its variance is reduced.

In boosting methods, base estimators are built sequentially and one tries to reduce the
bias of the combined estimator. The motivation is to combine several weak models to
produce a powerful ensemble.

The two methods can also be combined...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 29 / 51

https://scikit-learn.org/dev/modules/ensemble.html


Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)

5 modify event weights:

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

w
(j+1)
i = w

(j)
i · exp(aj) for y

(j)
i ̸= ti ,

w
(j+1)
i = w

(j)
i for y

(j)
i = ti . Scale all weights to get

∑
w

(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure

Let as assume that we have a sample of events xi with true categories ti .

All events have the same initial weight w
(1)
i = 1/N

The iterative procedure looks like follows. In step j :

1 train classifier Cj using our input data xi with weights w
(j)
i

2 calculate classifier response: y
(j)
i = Cj(xi )

3 calculate classifier error rate: εj =
∑

w
(j)
i · (y (j)i != ti ) /

∑
w

(j)
i

4 calculate classifier weight: aj = log
(
1−εj
εj

)
5 modify event weights:

or w
(j+1)
i = w

(j)
i · exp(−α y

(j)
i ti aj).

Scale all weights to get
∑

w
(j+1)
i = 1

A.F.Żarnecki Statictical analysis 13 January 16, 2025 30 / 51



Boosting

Procedure (Behnke)

By reweighting events, we force subsequent classifiers to focus on events (i.e. value ranges)
where classification was poor.

New classifiers are still “weak”, but they properly classify different classes of events.

We get a sequence of classifiers focusing on different variable regions.

We can get much stronger classifier by combining their outputs

CBoost(x) =
1

M

∑
j

aj Cj(x)

where M is the total number of classifiers in the collection.

This procedure is referred to as “adaptive boost” (AdaBoost)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 31 / 51



Boosting

Procedure (Behnke)

By reweighting events, we force subsequent classifiers to focus on events (i.e. value ranges)
where classification was poor.

New classifiers are still “weak”, but they properly classify different classes of events.

We get a sequence of classifiers focusing on different variable regions.

We can get much stronger classifier by combining their outputs

CBoost(x) =
1

M

∑
j

aj Cj(x)

where M is the total number of classifiers in the collection.

This procedure is referred to as “adaptive boost” (AdaBoost)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 31 / 51



Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Classifier response (color map) Zero response contour (default cut)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Classifier response (color map) Zero response contour (default cut)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Classifier response (color map) Zero response contour (default cut)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Classifier response (color map) Zero response contour (default cut)

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Final performance improves significantly ⇒ “strong classifier” obtained

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Final performance improves significantly ⇒ “strong classifier” obtained

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Final performance improves significantly ⇒ “strong classifier” obtained

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting 13 Boost.ipynb

Example of weak classifier (linear discriminant) boosting

Final performance improves significantly ⇒ “strong classifier” obtained

A.F.Żarnecki Statictical analysis 13 January 16, 2025 32 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Boost.ipynb


Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”

A.F.Żarnecki Statictical analysis 13 January 16, 2025 33 / 51



Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”

A.F.Żarnecki Statictical analysis 13 January 16, 2025 33 / 51



Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”

A.F.Żarnecki Statictical analysis 13 January 16, 2025 33 / 51



Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”

A.F.Żarnecki Statictical analysis 13 January 16, 2025 33 / 51



Boosting

Classifier boosting
Surprisingly, the procedure works also for the completely random
(not optimized in any way) classifiers used as “building blocks”

Final performance only slightly worse than for more optimized input...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 33 / 51



Boosting

Box cut classifier

Random box cut based on two random points in the parameter space:

A.F.Żarnecki Statictical analysis 13 January 16, 2025 34 / 51



Boosting

Box cut classifier

Box cut with highest efficiency selected out of 10 random box cuts

A.F.Żarnecki Statictical analysis 13 January 16, 2025 35 / 51



Boosting

Box cut classifier

Box cut with highest efficiency selected out of 100 random box cuts

A.F.Żarnecki Statictical analysis 13 January 16, 2025 35 / 51



Boosting

Box classifier boosting 13 Cuts.ipynb

Example of weak classifier (best box cut out of 10 random) boosting

A.F.Żarnecki Statictical analysis 13 January 16, 2025 36 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Cuts.ipynb


Boosting

Box classifier boosting 13 Cuts.ipynb

Example of weak classifier (best box cut out of 10 random) boosting

A.F.Żarnecki Statictical analysis 13 January 16, 2025 36 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Cuts.ipynb


Boosting

Box classifier boosting 13 Cuts.ipynb

Example of weak classifier (best box cut out of 100 random) boosting

Selection closely follows train data! Worse for test data, but still very efficient...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 36 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_Cuts.ipynb


Boosting

Box classifier boosting

Even random box cut (without selection) can get boosted

Results only slightly worse than with optimized input classifier, still quite useful...
A.F.Żarnecki Statictical analysis 13 January 16, 2025 37 / 51



Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 38 / 51



Decision Trees

Principle

It is quite a common approach in data selection to apply cuts on variables considered.
We can profit from our understanding of the processes studied...

IDM scalar pair-production
with di-lepton signature

However, tuning the cuts by hand is difficult...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 39 / 51



Decision Trees

Example

We can write down the cuts that will perfectly classify our training sample:

A.F.Żarnecki Statictical analysis 13 January 16, 2025 40 / 51



Decision Trees

Example

But on test sample results will be worse! Efficiency ∼95%

Note that this will get much poorer in multi-dimensional space...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 41 / 51



Decision Trees

Example

The tree for full sample classification very complicated already in 2-D...
x[1] <= -0.512
gini = 0.498

samples = 1000
value = [472, 528]

x[1] <= -0.726
gini = 0.014

samples = 275
value = [273, 2]

True

x[1] <= 1.317
gini = 0.398

samples = 725
value = [199, 526]

False

gini = 0.0
samples = 245
value = [245, 0]

x[1] <= -0.723
gini = 0.124

samples = 30
value = [28, 2]

gini = 0.0
samples = 1
value = [0, 1]

x[0] <= 0.259
gini = 0.067

samples = 29
value = [28, 1]

gini = 0.0
samples = 23
value = [23, 0]

x[0] <= 0.53
gini = 0.278
samples = 6
value = [5, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 5
value = [5, 0]

x[0] <= -0.567
gini = 0.306

samples = 648
value = [122, 526]

gini = 0.0
samples = 77
value = [77, 0]

x[1] <= 0.38
gini = 0.489

samples = 113
value = [65, 48]

x[0] <= 0.96
gini = 0.19

samples = 535
value = [57.0, 478.0]

x[1] <= 0.158
gini = 0.165

samples = 44
value = [40, 4]

x[0] <= -1.538
gini = 0.462

samples = 69
value = [25.0, 44.0]

x[1] <= -0.037
gini = 0.056

samples = 35
value = [34, 1]

x[0] <= -1.409
gini = 0.444
samples = 9
value = [6, 3]

gini = 0.0
samples = 26
value = [26, 0]

x[1] <= -0.025
gini = 0.198
samples = 9
value = [8, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 8
value = [8, 0]

x[0] <= -1.667
gini = 0.375
samples = 4
value = [1, 3]

gini = 0.0
samples = 5
value = [5, 0]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 3
value = [0, 3]

gini = 0.0
samples = 12
value = [12, 0]

x[1] <= 0.76
gini = 0.352

samples = 57
value = [13, 44]

x[0] <= -1.232
gini = 0.49

samples = 21
value = [9, 12]

x[0] <= -0.59
gini = 0.198

samples = 36
value = [4, 32]

x[1] <= 0.715
gini = 0.32

samples = 15
value = [3, 12]

gini = 0.0
samples = 6
value = [6, 0]

x[0] <= -1.342
gini = 0.142

samples = 13
value = [1, 12]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 8
value = [0, 8]

x[1] <= 0.541
gini = 0.32

samples = 5
value = [1, 4]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 4
value = [0, 4]

x[0] <= -0.876
gini = 0.157

samples = 35
value = [3, 32]

gini = 0.0
samples = 1
value = [1, 0]

x[0] <= -0.927
gini = 0.291

samples = 17
value = [3, 14]

gini = 0.0
samples = 18
value = [0, 18]

x[1] <= 0.913
gini = 0.133

samples = 14
value = [1, 13]

x[0] <= -0.925
gini = 0.444
samples = 3
value = [2, 1]

gini = 0.0
samples = 9
value = [0, 9]

x[0] <= -1.034
gini = 0.32

samples = 5
value = [1, 4]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 4
value = [0, 4]

gini = 0.0
samples = 1
value = [1, 0]

x[0] <= -0.903
gini = 0.5

samples = 2
value = [1, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

x[0] <= 0.189
gini = 0.124

samples = 512
value = [34, 478]

gini = 0.0
samples = 23
value = [23, 0]

x[1] <= 0.899
gini = 0.32

samples = 110
value = [22, 88]

x[0] <= 0.669
gini = 0.058

samples = 402
value = [12, 390]

x[1] <= -0.224
gini = 0.4

samples = 29
value = [21, 8]

x[1] <= 1.262
gini = 0.024

samples = 81
value = [1, 80]

x[0] <= 0.082
gini = 0.397

samples = 11
value = [3, 8]

gini = 0.0
samples = 18
value = [18, 0]

x[1] <= -0.47
gini = 0.219
samples = 8
value = [1, 7]

x[1] <= -0.476
gini = 0.444
samples = 3
value = [2, 1]

x[1] <= -0.49
gini = 0.5

samples = 2
value = [1, 1]

gini = 0.0
samples = 6
value = [0, 6]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 73
value = [0, 73]

x[0] <= 0.056
gini = 0.219
samples = 8
value = [1, 7]

gini = 0.0
samples = 7
value = [0, 7]

gini = 0.0
samples = 1
value = [1, 0]

x[0] <= 0.668
gini = 0.11

samples = 172
value = [10, 162]

x[1] <= -0.237
gini = 0.017

samples = 230
value = [2, 228]

x[1] <= 0.832
gini = 0.1

samples = 171
value = [9, 162]

gini = 0.0
samples = 1
value = [1, 0]

x[1] <= -0.155
gini = 0.191

samples = 75
value = [8, 67]

x[0] <= 0.578
gini = 0.021

samples = 96
value = [1, 95]

x[0] <= 0.305
gini = 0.07

samples = 55
value = [2, 53]

x[1] <= 0.452
gini = 0.42

samples = 20
value = [6, 14]

x[1] <= -0.366
gini = 0.346
samples = 9
value = [2, 7]

gini = 0.0
samples = 46
value = [0, 46]

gini = 0.0
samples = 7
value = [0, 7]

gini = 0.0
samples = 2
value = [2, 0]

gini = 0.0
samples = 4
value = [4, 0]

x[0] <= 0.564
gini = 0.219

samples = 16
value = [2, 14]

x[0] <= 0.442
gini = 0.444
samples = 3
value = [2, 1]

gini = 0.0
samples = 13
value = [0, 13]

gini = 0.0
samples = 1
value = [1, 0]

x[0] <= 0.539
gini = 0.5

samples = 2
value = [1, 1]

gini = 0.0
samples = 1
value = [0, 1]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 86
value = [0, 86]

x[0] <= 0.588
gini = 0.18

samples = 10
value = [1, 9]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 9
value = [0, 9]

x[1] <= -0.243
gini = 0.124

samples = 15
value = [1, 14]

x[1] <= 0.492
gini = 0.009

samples = 215
value = [1, 214]

gini = 0.0
samples = 14
value = [0, 14]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 150
value = [0, 150]

x[1] <= 0.498
gini = 0.03

samples = 65
value = [1, 64]

gini = 0.0
samples = 1
value = [1, 0]

gini = 0.0
samples = 64
value = [0, 64]

How much can we reduce the size of the decision tree?
A.F.Żarnecki Statictical analysis 13 January 16, 2025 42 / 51



Decision Trees

Example 13 skTree.ipynb

Good performance (efficiency above 90%) already for 4 cut levels!

A.F.Żarnecki Statictical analysis 13 January 16, 2025 43 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skTree.ipynb


Decision Trees

Example 13 skTree.ipynb

Good performance (efficiency above 90%) already for 4 cut levels!

x[1] <= -0.512
gini = 0.498

samples = 1000
value = [472, 528]

x[1] <= -0.726
gini = 0.014

samples = 275
value = [273, 2]

True

x[1] <= 1.317
gini = 0.398

samples = 725
value = [199, 526]

False

gini = 0.0
samples = 245
value = [245, 0]

x[1] <= -0.723
gini = 0.124

samples = 30
value = [28, 2]

gini = 0.0
samples = 1
value = [0, 1]

x[0] <= 0.259
gini = 0.067

samples = 29
value = [28, 1]

gini = 0.0
samples = 23
value = [23, 0]

gini = 0.278
samples = 6
value = [5, 1]

x[0] <= -0.567
gini = 0.306

samples = 648
value = [122, 526]

gini = 0.0
samples = 77
value = [77, 0]

x[1] <= 0.38
gini = 0.489

samples = 113
value = [65, 48]

x[0] <= 0.96
gini = 0.19

samples = 535
value = [57.0, 478.0]

gini = 0.165
samples = 44
value = [40, 4]

gini = 0.462
samples = 69

value = [25.0, 44.0]

gini = 0.124
samples = 512

value = [34, 478]

gini = 0.0
samples = 23
value = [23, 0]

A.F.Żarnecki Statictical analysis 13 January 16, 2025 43 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skTree.ipynb


Decision Trees

Example 13 skTree.ipynb

Good performance (efficiency above 90%) already for 4 cut levels!

A.F.Żarnecki Statictical analysis 13 January 16, 2025 43 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skTree.ipynb


Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 44 / 51



Boosted Decision Trees

Boosted Decision Trees

For their good performance, decision trees are “natural candidates” for use in boosting
procedure, to get even better classifiers.

Boosted Decision Trees (BDT) algorithms are widely used in particle physics, mainly for their
flexibility and stability.

Many different algorithms exist, both concerning tree generation and training, and boosting
procedure.

Wide range of options implemented in sklearn library.

TMVA (Multi Variate Analysis) package for root widely used in particle physics community.
More advanced tuning options (⇒ better performance?), but more complicated to use. Based
on root, is well integrated into data processing and analysis framework...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 45 / 51



Boosted Decision Trees

Boosted Decision Trees

For their good performance, decision trees are “natural candidates” for use in boosting
procedure, to get even better classifiers.

Boosted Decision Trees (BDT) algorithms are widely used in particle physics, mainly for their
flexibility and stability.

Many different algorithms exist, both concerning tree generation and training, and boosting
procedure.

Wide range of options implemented in sklearn library.

TMVA (Multi Variate Analysis) package for root widely used in particle physics community.
More advanced tuning options (⇒ better performance?), but more complicated to use. Based
on root, is well integrated into data processing and analysis framework...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 45 / 51



Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

10 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

20 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

50 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

100 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

200 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example 13 skBDT.ipynb

Good performance (efficiency > 90%) already with 10 trees.

500 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 46 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_skBDT.ipynb


Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
10 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
20 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
50 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
100 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
200 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

BDT Example

Classification “follows” training sample better and better, with increasing number of trees...
But results “saturate” at some point (at efficiency ∼ 93%) for independent test sample.
500 trees

A.F.Żarnecki Statictical analysis 13 January 16, 2025 47 / 51



Boosted Decision Trees

Overtraining source: datacadamia.com

Is a common problem in all Machine Learning methods

If we try too hard (also by using too many variables !), result can get worse...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 48 / 51

https://datacadamia.com/data_mining/overfitting


Boosted Decision Trees

Overtraining source: datacadamia.com

Is a common problem in all Machine Learning methods

If we try too hard (also by using too many variables !), result can get worse...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 48 / 51

https://datacadamia.com/data_mining/overfitting


Statistical analysis of experimental data

Machine Learning

1 Artificial Neural Networks

2 Boosting

3 Decision Trees

4 Boosted Decision Trees

5 Homework

A.F.Żarnecki Statictical analysis 13 January 16, 2025 49 / 51



Homework

Homework Solutions to be uploaded by January 29.

Three samples of events x = (x1, x2, x3, x4) were prepared:

training signal sample

training background sample

test sample, with both signal and background events, for the actual analysis

⇒ to be downloaded from the lecture web page 13 homework read.ipynb

Use one of the presented approaches to obtain event classification for the considered event
samples:

draw ROC curve for the obtained classifier

extract the fraction of the signal events in the test sample (with uncertainty)

check how the result and its uncertainty depend on the classifier response cut

Numbers of signal and background events selected from the test sample have to be corrected
for classification efficiency and errors...

A.F.Żarnecki Statictical analysis 13 January 16, 2025 50 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_homework_read.ipynb


Homework

Homework data 13 homework read.ipynb

A.F.Żarnecki Statictical analysis 13 January 16, 2025 51 / 51

https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/13_Machine_Learning/13_homework_read.ipynb

	Artificial Neural Networks
	Boosting
	Decision Trees
	Boosted Decision Trees
	Homework

