Statistical analysis of experimental data

Markov Chains

Aleksander Filip Zarnecki

FACULTY OF
- PHYSICS

UNIVERSITY
OF WARSAW

Lecture 14
January 23, 2025

January 23, 2025

Statictical analysis 14

A.F.Zarnecki



Statistical analysis of experimental data > .

Markov Chains

@ Markov Chains
© Markov Chain Monte Carlo
e Application to parameter fitting

@ Final exam

A.F.Zarnecki Statictical analysis 14 January 23, 2025
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Applications (lecture 05)
Described procedure can be used not only to calculate integrals of one-dimensional functions,

it is much more general... How to calculate volume of a given shape?

Standard procedure: Monte Carlo integration:
scan all dimensions using dense point grid and Generate random points in the considered
sum cells with centers inside the volume space and count points inside the volume
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Monte Carlo integration 5

General case

Examples presented considered the special case: input random variables had uniform
distribution and “test function” was binary (returning 0 or 1).

In the general case we want to determine an expectation value of a function h(x) of random
variable vector x described by f(x) pdf:

un = Ef[h(x)] = /dx h(x) f(x)

Monte Carlo determination of 1, assumes we can generate random variables from f(x).
We can then calculate:

. 1
puc = lim 5 > h(xi)

where x;, i = 1,..., N are random (input) variables generated from f(x)
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Monte Carlo integration 5

Weighted Monte Carlo

General method for generating random points in multi-dimensional space using
acceptance—rejection technique can have very low efficiency, if probability distribution function
f(x) varies a lot, eg. has sharp peaks.

Assume we know how to generate random numbers from g(x).
We can then apply the following procedure:
@ generate x; distributed according to g(x)
@ accept all generated value x;,
but consider them with additional weight: w; = f(x)/g(x)

For example, when calculating the expectation value of h(x):

>_i wi h(xi)
i wi

“unweighted” samples considered previously correspond to w; = 1

UmMc — HwMCc =

A.F.Zarnecki Statictical analysis 14 January 23, 2025



Monte Carlo integration

Weighted Monte Carlo

When using weighted Monte Carlo “events”, number of events has to be replaced by sum of
weights:

N — NW:ZW;
i

Variance of the sum of weights:

V(Ny) = Z w?

Statistical power of the weighted Monte Carlo sample is equivalent to unweighted sample of:

N — N;, _ (Z;Wi)2
4 V(N) - w?

1 1
For Poisson distributed random number V(N) = N
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Maximum Likelihood Method -
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General problem

Presented above was a simple example of a more general problem: how to estimate parameters
of the probability distribution function from the results of the experiment (measurements).

In many cases, parameter value can not be directly extracted from the measurement results.
In the general case, shape of the probability density function for measurement result x:

X = (X1,...,Xn)
depends on a set of pdf parameters:

A = (A, )
so the probability density should be written as:

f(x;A)
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Maximum Likelihood Method >

Maximum Likelihood Method

L= 9N

The product: N
j=1

is called a likelihood function.

The most commonly used approach to parameter estimation is the maximum likelihood
approach: as the best estimate of the parameter set A we choose the parameter values for
which the likelihood function has a (global) maximum.

Frequently used is also log-likelihood function
N .
¢ = InL =) Inf(xU;x)
j=1

we can look for maximum value of £ or minimum of —2¢ = —2InL
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Statistical analysis of experimental data > .

Markov Chains

@ Markov Chains
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Markov Chains -

General concept

(Bonamente)

Markov Chain is a stochastic process where we consider the sequence of measurements
(random variables) X(t).  Measurements at fixed time intervals are a frequent case. ..

Outcome of the measurement (also called “state” of the chain) has to belong to the defined
“state space”’. It is our sample space...

However, the probability density for different states is not given a'priori! Instead, probability of
the subsequent state (measurement at t + 1) depends only on the current state of the system:

P(x(t+1)) — P(x(t+1)|x(t))
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Markov Chains P

General concept (Bonamente)

Markov Chain is a stochastic process where we consider the sequence of measurements
(random variables) X(t).  Measurements at fixed time intervals are a frequent case. ..

Outcome of the measurement (also called “state” of the chain) has to belong to the defined
“state space”’. It is our sample space...

However, the probability density for different states is not given a'priori! Instead, probability of
the subsequent state (measurement at t + 1) depends only on the current state of the system:

P(x(t+1)) — P(x(t+1)|x(t))

Probability can change in time, but it depends only on the current state of the chain,
and not on any state of its earlier history!

This “short memory” property is known as the “Markovian property”. As for particle decays!
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Markov Chains -

Simple chain example

Consider two boxes with a total of N balls.

The state of the system can be defined by a number n of balls which are placed in the first
box, 0 < n < N. The state space of the system has N + 1 elements.
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Markov Chains -

Simple chain example

Consider two boxes with a total of N balls.

The state of the system can be defined by a number n of balls which are placed in the first
box, 0 < n < N. The state space of the system has N + 1 elements.

The “random walk” chain can defined by the following procedure. At each step:
@ select a box at random,

@ move one ball from the selected box (if not empty) in the other one.
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Markov Chains -

Simple chain example
Consider two boxes with a total of N balls.

The state of the system can be defined by a number n of balls which are placed in the first
box, 0 < n < N. The state space of the system has N + 1 elements.

The “random walk” chain can defined by the following procedure. At each step:
@ select a box at random,

@ move one ball from the selected box (if not empty) in the other one.
This chain can be presented in terms of the transition probabilities:
for n(tt1) = n( £ 1 and n(®) £ 0 and n(0) £ N
n(t+1) = () £1 and (n() = 0 or n() = N)
n(t+1) £ p(0) 1

p(n(t+1))

o =N
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Markov Chains im
Simple chain example 14_Simple.ipynb
Result of the algorithm implementation
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Markov Chains

14 _Simple.ipynb

Simple chain example

Result of the algorithm implementation
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Looks like symmetry violation?...
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Markov Chains

14_Simple.ipynb

Simple chain example

Result of the algorlthm implementation

Tt
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Step

Large time scales for count fluctuations = symmetry restored on longer time scales
January 23, 2025
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Simple chain example 14_Simple.ipynb

Result of the algorithm implementation
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Fluctuations still visible in ball count distribution...
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Markov Chains

Simple chain example 14_Simple.ipynb

Result of the algorithm implementation
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Decrease with the chain lenght...
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Markov Chains

Simple chain example 14_Simple.ipynb

Result of the algorithm implementation
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Decrease with the chain lenght...
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Simple chain example 14_Simple.ipynb

Result for the extended example (4 boxes)
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Even starting from even ball distribution, large fluctuations appear very soon...
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Markov Chains

Simple chain example 14_Simple.ipynb

Result for the extended example (4 boxes)
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Markov Chains 5

Simple chain example 14_Simple.ipynb

Result for the extended example (4 boxes)
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Markov Chains -

Ehrenfest chain (Bonamente)

Simple model of diffusion: same case of two boxes with a total of N balls,
but different procedure for generating next step.

The state of the system is defined by a number n of balls the first box, 0 < n < N.
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Markov Chains -

Ehrenfest chain (Bonamente)

Simple model of diffusion: same case of two boxes with a total of N balls,
but different procedure for generating next step.

The state of the system is defined by a number n of balls the first box, 0 < n < N.

The Ehrenfest chain is defined by the following procedure. At each step:
@ select a ball at random from either box, previously we were selecting a box
@ move the selected ball in the other box.
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Markov Chains -

Ehrenfest chain (Bonamente)

Simple model of diffusion: same case of two boxes with a total of N balls,
but different procedure for generating next step.

The state of the system is defined by a number n of balls the first box, 0 < n < N.

The Ehrenfest chain is defined by the following procedure. At each step:
@ select a ball at random from either box, previously we were selecting a box
@ move the selected ball in the other box.

This chain can be presented in terms of the transition probabilities:

% for n(tt) = p(H) —1
p(nt+1) N0 n(t+D) = (0 4 1
0 n(t+1) £ () 41
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Markov Chains

Ehrenfest chain 14_Ehrenfest.ipynb

Result of the algorithm implementation

Ehrenfest chain
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Looks again like symmetry violation?...
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14 _Ehrenfest.ipynb

Result of the algorithm implementation
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Markov Chains

14_Ehrenfest.ipynb

Ehrenfest chain

Result of the algorithm implementation

Ehrenfest chain
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Symmetry restored on longer time scales...
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Markov Chains -

Simple example: Ehrenfest chain 14_Ehrenfest.ipynb

Result of the algorithm implementation

Distribution of ball count for 10000 steps

800

700+

600

500+

400

Steps

3004

2004

100

30 35 40 45 50 55 60 65 70
Ball count

Fluctuations still visible in ball count distribution...
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Simple example: Ehrenfest chain 14_Ehrenfest.ipynb
Result of the algorithm implementation

Distribution of ball count for 100000 steps
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Decrease with the chain lenght...
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Simple example: Ehrenfest chain 14_Ehrenfest.ipynb
Result of the algorithm implementation

Distribution of ball count for 1000000 steps
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Decrease with the chain lenght...
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Markov Chains

Web example Piero Paialunga in Towards Data Science

As a student you can go to the bar each Saturday.

And you need to go back home at some time...

We can consider the following “chain” of states (shown above):
@ you always start from Home going to Bar 1 or Bar 2.
@ after each drink in Bar 1 you have three choices:
go Back Home, go to Bar 2 and order another drink in Bar 1.

o if you are already in Bar 2, you have only two choices after each round:
go Back Home or order another drink (not shown).

@ once you get Back Home, you stay there.

A.F.Zarnecki
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Web example 14_TwoBar.ipynb

Even if all transition probabilities are known, it is not always possible to obtain statistical
properties of the distribution directly...

But one can simulate Markov Chain state sequence many times...

Probability of visiting bars:
Bar 2 only Bar 1 only

29.8% 22.7%

47.5%

Both bars
A.F.Zarnecki
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Markov Chains

Web example 14 _TwoBar2.ipynb

Probability density for the number of drinks:

Saturday night bar tour

107!

=
o
1

N

Probability

1073

107
0 5 10 15 20 25 30
Number of drinks

We can not only estimate the expected number of drinks (which we could also do from the

known probabilities), but also the distribution...
January 23, 2025
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Markov Chains -

Another example

The chain in the web example always ended in the single 'Back Home' state.
Not very interesting...

A Consider an atom irradiated with the laser light tuned to the
excitation energy:
@ when in ground state, atom has certain probability (per time unit

= simulation step) to get excited

@ when in the excited state, atom can radiate photon and go back
to the ground state or, with lower probability, radiate softer
photon and go to intermediate meta-stable state.

@ when in the meta-stable state, probability of radiation (per unit
\ / of time) is very low.
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Another example 14_atom.ipynb
Example simulation results starting from ground state, 1000 time steps:

Markov chain simulation example

Excited — e e amtone e sm  emm o e ewmcciccmmme e -

Meta-stable — - pa—

Ground — e c—  —— —— e ——— —— ——— -

0.0 0.2 0.4 0.6 0.8 1.0
Simulation time

Fast oscillations between ground and excited state, longer stays in meta-stable...
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Another example 14_atom2.ipynb

Example simulation results starting from ground state, 10000 time steps:

Atomic state Radiated photons

4000 400

350

3000 300

= w250
=4 =4
3 3

© 2000 S 200

150

1000 100

50

%round Meta-stable Excited 0 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Photon energy

System “forgets” about the initial state fast. We can get distributions for different parameters...
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Another example 14_atom2.ipynb

Example simulation results starting from ground state, 10000 time steps:
After increasing meta-stable state lifetime:

Atomic state Radiated photons
7000 175
6000 150
5000 125
S 4000 <S 100
o o
[$] o
3000 75
2000 50
1000 25
%round Meta-stable Excited 0 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Photon energy

System “forgets” about the initial state fast. We can get distributions for different parameters...
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Markov Chains -

Transition probability

Assume that the state space consists of N states: s(1),..., S
Then, for each state s(; on can define a set of on-step transition probabilities:

pi = p(XUTD =5 X1 = 5)

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).
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Markov Chains -

Transition probability

Assume that the state space consists of N states: s(1),..., S
Then, for each state s(; on can define a set of on-step transition probabilities:

pi = p(XUTD =5 X1 = 5)

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).

If we now describe state of the system by a N-component vector:

(siy)i = 05  eg sy = (1,0,0,...,0)
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Markov Chains -

Transition probability

Assume that the state space consists of N states: s(1),..., S
Then, for each state s(; on can define a set of on-step transition probabilities:

pi = p(XUTD =5 X1 = 5)

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).

If we now describe state of the system by a N-component vector:

(si))i = 05 eg s = (0,1,0,...,0)
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Markov Chains -

Transition probability

Assume that the state space consists of N states: s(1),..., S
Then, for each state s(; on can define a set of on-step transition probabilities:

pi = p(XUTD =5 X1 = 5)

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).

If we now describe state of the system by a N-component vector:

(s))i = 05  eg sy = (0,0,0,....1)

A.F.Zarnecki Statictical analysis 14 January 23, 2025



Markov Chains -

Transition probability

Assume that the state space consists of N states: s(1),..., S
Then, for each state s(; on can define a set of on-step transition probabilities:

pi = p(XUTD =5 X1 = 5)

We usually require that these probabilities are time-independent
(such chain is called time-homogeneous).

If we now describe state of the system by a N-component vector:
(S(,-))J' = (5,J e.g. S(N) = (0,0,0,...,1)
then probabilities for different states to proceed after state s(;) can be written as:
p = si T where T = (pjj)

is the transition matrix
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Markov Chains -

Chain properties (Bonamente)

Probabilities of states after n time steps are then given by:
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(Bonamente)

Chain properties

Probabilities of states after n time steps are then given by:

Let uy denote the probability that the system returns to the initial state s(;) in
exactly k time steps. We can define the total probability for returning to the initial state

oo
u = E Uk
k=1
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(Bonamente)

Chain properties

Probabilities of states after n time steps are then given by:

Let uy denote the probability that the system returns to the initial state s(;) in
exactly k time steps. We can define the total probability for returning to the initial state:

o0
u = Z Uk
k=1
States can be classified according to this probability:
o if u=1 state s;) is recurrent,
e if u <1 state s; is transient.
If state is recurrent, it will certainly be observed again (even, if we have to wait very long),

and the system will return to this state infinitely often.
A.F.Zarnecki
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Chain properties

(Bonamente)

State s;) is accessible from the initial state s;, if there is a non-zero probability of reaching
this state from the initial state in finite number of time steps:

('), = (w17, > 0

for some natural number m.
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Markov Chains P

Chain properties (Bonamente)

State s;) is accessible from the initial state s;, if there is a non-zero probability of reaching
this state from the initial state in finite number of time steps:

('), = (w17, > 0

for some natural number m.

If a state s(;) is accessible from a recurrent state s;),
then () is also recurrent, and S(i) is accessible from S()-
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Markov Chains =

Chain properties (Bonamente)

State s;) is accessible from the initial state s;, if there is a non-zero probability of reaching
this state from the initial state in finite number of time steps:

('), = (w17, > 0

for some natural number m.

If a state s(;) is accessible from a recurrent state s;),
then () is also recurrent, and S(i) is accessible from S()-

If a Markov chain has a finite number of states and each state is accessible from any other
state, then all states are recurrent.
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Chain properties

A chain is said to be irreducible if all states are accessible from others.

Possible states of reducible Markov Chain can be divided into two or more classes, which do
not communicate with each other.
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Markov Chains -

Chain properties (Bonamente)

A chain is said to be irreducible if all states are accessible from others.
Possible states of reducible Markov Chain can be divided into two or more classes, which do
not communicate with each other.

A state s(;y is said to be periodic with period T if system can return to this state only at times
t divisible by T:

),

All states of irreducible chain share the same period.

p>0 for t%T =0
0 t%T 1 =0
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Markov Chains -

Chain properties (Bonamente)

A chain is said to be irreducible if all states are accessible from others.
Possible states of reducible Markov Chain can be divided into two or more classes, which do
not communicate with each other.

A state s(;y is said to be periodic with period T if system can return to this state only at times
t divisible by T:

),

All states of irreducible chain share the same period.

p>0 for t%T =0
0 t%T 1 =0

A chain is said to be aperiodic, if return to a given state can occur at any time
(corresponding to T =1 in definition above).
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Markov Chains

Stationary distribution
In most cases, we do not care about the initial system state, we want to calculate the set of
probabilities for a system after a large number n of steps:

p*° = lim p("

n—oo

This probabilities are called limiting probabilities.
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Markov Chains

Stationary distribution

In most cases, we do not care about the initial system state, we want to calculate the set of
probabilities for a system after a large number n of steps:

p*° = lim p("

n—oo

This probabilities are called limiting probabilities.

For a irreducible aperiodic Markov Chain with recurrent states, limiting probabilities
correspond to the stationary distribution:

@ = w-T

and this distribution is unique. Regardless of the starting point of the chain, the same
stationary distribution will eventually be reached.
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Markov Chains

14_atom3.ipynb

Stationary distribution
Evolution of state probabilities for system starting at 'Ground’ state at t = 0

System evolution

Atom state
—— Ground
0.8 —— Meta-stabel
—— Excited
0.6
=
3
3
20.4
&
0.2
_— -
0.0 —
10° 10! 10? 10° 104

Simulation time
Note logarithmic time scale!

Stationary state reached for t ~ 1000
January 23, 2025

Statictical analysis 14
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https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_atom3.ipynb

Markov Chains -

Stationary distribution this is what we look for in most cases

There are three possible approaches to finding a stationary solution:
@ by running multiple Markov Chain instances and looking at final state distribution,
simple but time consuming
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Markov Chains -

Stationary distribution this is what we look for in most cases

There are three possible approaches to finding a stationary solution:
@ by running multiple Markov Chain instances and looking at final state distribution,
simple but time consuming

@ applying the transfer matrix many times, starting for arbitrary initial state vector
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Markov Chains -

Stationary distribution this is what we look for in most cases

There are three possible approaches to finding a stationary solution:
@ by running multiple Markov Chain instances and looking at final state distribution,
simple but time consuming

@ applying the transfer matrix many times, starting for arbitrary initial state vector

@ by looking for analytic solution to the problem:

T = Zﬂ',‘ pjj  stationary distribution
Jj
Z T = 1 normalization constrain
i
m > 0
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Markov Chains -

Stationary distribution Herman Scheepers on Towards Data Science

In the analytic approach the problem can be presented as a set of equations:

0

TT —1I :
B — .

o 0
1 ... 1 1
A ST = b

which are, however, not independent (the problem is over-constrained).
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Markov Chains -

Stationary distribution Herman Scheepers on Towards Data Science

In the analytic approach the problem can be presented as a set of equations:

0

TT —1I :
B — .

o 0
1 ... 1 1
A ST = b

which are, however, not independent (the problem is over-constrained).
The simple solution is to multiply both sides by AT:
ATA-w = ATb

which can now be solved with standard linear algebra procedures...
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Statistical analysis of experimental data > .

Markov Chains

© Markov Chain Monte Carlo
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Markov Chain Monte Carlo b

General concept arXiv:0905.1629
We introduced Monte Carlo as an alternative ° [
method for integrating an arbitrary function. °
. . .
Arbitrary parameter space can be considered. a °
[ ]
o [ ]
Rejection technique b

Generate uniformly distributed random points, select those in the considered parameter space...
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Markov Chain Monte Carlo ’im

General concept arXiv:0905.1629
We introduced Monte Carlo as an alternative ° [
method for integrating an arbitrary function. °
. . .
Arbitrary parameter space can be considered. a °
[ ]
o [ ]
Rejection technique b

Generate uniformly distributed random points, select those in the considered parameter space...
Efficiency can be low...
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Markov Chain Monte Carlo ’im

Standard approach example

Generation of random points from the surface considered in lecture 05

r ]

0.5F .
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Standard approach example 14_mcmc.ipynb

Generation of random points from the surface considered in lecture 05

Rejection technique simulation Single variable distribution

)
1.00 08
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X Y

N=1 000

A.F.Zarnecki Statictical analysis 14 January 23, 2025


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_mcmc.ipynb

Markov Chain Monte Carlo

\
N /’/
. ;\\\ F

Standard approach example 14_mcmc.ipynb

Generation of random points from the surface considered in lecture 05

Rejection technique simulation " Single variable distribution
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Standard approach example 14_mcmc.ipynb

Generation of random points from the surface considered in lecture 05

Rejection technique simulation i Single variable distribution
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X Y

N=100 000

A.F.Zarnecki Statictical analysis 14 January 23, 2025


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_mcmc.ipynb

\
N /’/
. ;\\\ F

Markov Chain Monte Carlo

Standard approach example 14_mcmc.ipynb

Generation of random points from the surface considered in lecture 05

Rejection technique simulation i Single variable distribution
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Markov Chain Monte Carlo >

General concept y arXiv:0905.1629
/
We do not want to reject events! 6
Random move procedure: subsequent points u O
generated by random variations of previous ones T
O
Markov Chain Monte Carlo procedure b

If the new point is outside the considered parameter space, do not reject it,
but take the last point again (!)
Can this procedure work ?
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Markov Chain Monte Carlo

Markov Chain MC example 14_mcmc.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 100 Single variable distribution
38
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Markov Chain MC example 14_mcmc.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N =1000 Single variable distribution
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N=1000 Fluctuations are [irger, as many points “duplicated” "
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Markov Chain MC example 14_mcmc.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 10000 Single variable distribution
1.00 0.7
0.6
0.75 = 05
S 04
0.50 So3
0.2
0.25 0ok
0.0
> 0.00 ~1.00 -0.75-0.50 -0.25 0.00 0.25 0.50 0.75 1.00
X
-0.25
-0.50
-0.75
-1.00
000
-1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 1.00 021.00 —-0.7%-0.50 —0%25 0.00 025 0.50 °®.75 1.00°
X

N=10 000

A.F.Zarnecki Statictical analysis 14 January 23, 2025


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_mcmc.ipynb

Markov Chain Monte Carlo

\
N /’/
. ;\\\ F

Markov Chain MC example 14_mcmc.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 100000 Single variable distribution
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Markov Chain Monte Carlo

Markov Chain MC example 14_mcmc.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 1000000 Single variable distribution
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N=1 000 000 But “duplicates” not relevant for N — oo
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: Ax = Ay =0.2

Markov Chain simulation example N = 100 Single variable distribution
38
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N=100  Significant bias, depending on the starting point...
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: Ax = Ay =0.2

Markov Chain simulation example N =1000 Single variable distribution
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Markov Chain example

We can reduce number of “duplicates” by reducing step: Ax = Ay =0.2

Markov Chain simulation example N = 10000 o Single variable distribution
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: Ax = Ay =0.2

Markov Chain simulation example N = 1000000]0 Single variable distribution
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N=100 000  Distribution still not uniform...
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Markov Chain Monte Carlo

Markov Chain example

We can reduce number of “duplicates” by reducing step: Ax = Ay =0.2

Markov Chain simulation example N = 1000000 Single variable distribution
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N=1 000 000 But gets dniform for N — oo

A.F.Zarnecki Statictical analysis 14 January 23, 2025



Markov Chain Monte Carlo

\
N /’/
. ;\\\ F

More general case 14_mcmc2.ipynb

Gaussian probability distribution in the considered parameter space

Rejection technique simulation iy Single variable distribution
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Markov Chain Monte Carlo

More general case 14_mcmc2.ipynb

Gaussian probability distribution in the considered parameter space

Rejection technique simulation iy Single variable distribution
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More general case 14_mcmc2.ipynb

Gaussian probability distribution in the considered parameter space

Rejection technique simulation iy Single variable distribution
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N=100 000  generated in 2 335 937 tries, 4.3% efficiency
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Markov Chain Monte Carlo ’im

Metropolis—Hastings algorithm (Gi
Consider chain described by on-step transition probability p(X(t1)|x (%)

To generate points distributed according to 7(X), for each step t:
@ generate candidate point X* from p(X*|X(?)
@ compute the Metropolis—Hastings ratio:

FX) p(XO]x*)

R =
F(X(®) p(X*|X(1)

o for the next step take
) X with probability p* = min{R,1}
X otherwise. with probability 1 — p*

A.F.Zarnecki
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Markov Chain MC example (2)

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 1000
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14_mcmc3.ipynb

Single variable distributions
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 10000 Single variable distributions
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N=10 000 Large step = frge fluctuations
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 100000 Single variable distributions
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N=100 000 But converges to the expected distribution for lafge N
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax =Ay =1

Markov Chain simulation example N = 1000000 Single variable distributions
1.00 1.6 Simulation method
14 mmm Markov chain
0.75 - 1.2 [ Rejection
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N=1 000 000 But convergés to the expected distribution for drge N
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.05

Markov Chain simulation example N =1000 Single variable distributions
1.00 Simulation method
25 mmm Markov chain
0.75 2.0 [ Rejection
5 15
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X . Y
N=1 000 Small step = large bias
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Markov Chain MC example (2) 14_mcmc3.ipynb
Using maximum step size: Ax = Ay = 0.05

Markov Chain simulation example N = 10000200 Single variable distributions
1.00 1:75 Simulation method
mmm Markov chain
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N=10 000 Small step = farge bias
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.05

Markov Chain simulation example N = 100000 Single variable distributions
1.00 1.6 Simulation method
14 mmm Markov chain
0.75 2 [ Rejection
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N=100 000 But converges to the expected distribution for lafge N
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.05

Markov Chain simulation example N = 1000000 Single variable distributions
1.00 1.6 Simulation method
14 mmm Markov chain
0.75 2 [ Rejection
e
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N=1 000 000 But convergés to the expected distribution for drge N
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.2

Markov Chain simulation example N = 1000 2.0 Single variable distributions
1.00 1'75 Simulation method
1'50 mmm Markov chain
0.75 - 1:25 ] Rejection
3 100
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. . . . Y, .
N=1 000 Optimal step = ~ Poisson fluctuations, minimum 'bias
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.2

Markov Chain simulation example N = 10000 Single variable distributions
1.00 1.6 Simulation method
° 1.4 mmm Markov chain
0.75 - 12 [ Rejection
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. . . . Y, -
N=10 000 Optimal step 2 ~ Poisson fluctuations, minimum'bias
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Markov Chain Monte Carlo

Markov Chain MC example (2)

Using maximum step size: Ax = Ay = 0.2

Markov Chain simulation example N = 100000
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14_mcmc3.ipynb

Single variable distributions
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N=100 000 Converges fast to the expected distribution
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Markov Chain MC example (2) 14_mcmc3.ipynb

Using maximum step size: Ax = Ay = 0.2

Markov Chain simulation example N = 1000000 Single variable distributions
1.00 1.6 Simulation method
14 mmm Markov chain
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N=1 000 000 No rejectiod! Much larger samples with the same CPU
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Statistical analysis of experimental data > .

Markov Chains

e Application to parameter fitting
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Application to parameter fitting > .

Bayesian approach (lecture 01)

Bayes theorem can be used to generalize the concept of probability.

In particular, one can consider “probability” of given hypothesis H (theoretical model or model

parameter, eg. Hubble constant) when taking into known outcome D (data) of the experiment
P(DIH)

PHID) = “prpy - P(H)

There are two problems with this approach:

@ H can not be considered an event, sampling space can not be properly defined

@ we need to make a subjective assumption about the “prior” P(H)
describing our initial belief in hypothesis H

For these reasons | try to avoid it, and do not refer to P(H|D) as “probability”.
Rather use “degree of belief” for results of the procedure applied to non random events
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Application to parameter fitting

Maximum Likelihood Method (lecture 06)

The likelihood function:
f(xU); A)

,’:]z

J=1
describes the probability of a given measurement results x for the selected parameter values .
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Application to parameter fitting > .

Maximum Likelihood Method (lecture 06)

N
= JIf&Y;x)
Jj=1

describes the probability of a given measurement results x for the selected parameter values .

The likelihood function:

In the bayesian approach we can refer it to “probability distribution” for the parameters A:
F(A) ~ L(Ax)-p(A)

where p(A) is the assumed prior distribution for parameters A. (usually flat)
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Application to parameter fitting > .

Maximum Likelihood Method (lecture 06)

The likelihood function: N
= JIf&Y;x)

j=1

describes the probability of a given measurement results x for the selected parameter values .

In the bayesian approach we can refer it to “probability distribution” for the parameters A:
FA) ~ LX) - p(A)
where p(A) is the assumed prior distribution for parameters A. (usually flat)

If we know f(A), we can construct Markov Chain in A space.
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Application to parameter fitting > .

Maximum Likelihood Method (lecture 06)

N
= JIf&Y;x)
Jj=1

describes the probability of a given measurement results x for the selected parameter values .

The likelihood function:

In the bayesian approach we can refer it to “probability distribution” for the parameters A:
FA) ~ LX) - p(A)
where p(A) is the assumed prior distribution for parameters A. (usually flat)

If we know f(A), we can construct Markov Chain in A space.

With Metropolis—Hastings algorithm, starting from arbitrary @ point, the chain should
converge to f(A) distribution for N — oc.
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Application to parameter fitting

Example

1000 events were collected in the muon lifetime measurement. Distribution can be described
by the formula:

dN Nsig ¢ dNag
_— = T
dt T dt
. dNpg -1
with flat background level known to be =% =10 £ A us
Distribution of generated decay times Mean 2.985
2 80 [ | Std Dev 3.108
3 160
3 140 ;ll'
120 7
100
s
60 | +
o by
20 ety
oF i ria STy ans o rpan sl
0 2 4 6 8 10 12 14
Time [us]
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Application to parameter fitting > .

Example
Histogram can be fitted using iterative x> minimization procedure (without bg constraint)
e
10 = =
Fit results: )
1] 2 4 6 8 10 12 14

T = 2316 +£0.113 us Time [us]
Nsig = 430.773 £16.611 1. 0.279 —0.392
Npg = 4.399 +0.424 Corr = 0.279 1. —0.309

2 = 2246027 ~0392 —0309 1.
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Application to parameter fitting

Example 14_mcfit1.ipynb

Parameter evolution in the Markov Chain

Markov chain history

Normalization

10° 10*

HONNNNN QW
©®oNBO®O

Background level

10° 10! 10 10° 10
Iteration

Stable distribution obtained already after about 100 iterations
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Application to parameter fitting

Example 14_mcfit1.ipynb

Parameter evolution in the Markov Chain

Markov chain history

10° 10!
Iteration

Stable distribution obtained already after about 100 iterations
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Application to parameter fitting

\,

Example 14_mcfit2.ipynb
Parameter distributions after N = 10 000 iterations (skipping first 100)

Lifetime Normalization Background level

N W
[ o

g
=}

Probability density
= =
o w

I
v

o

o
N
o

A 380 400 420 440 460 480 500 520
T [us] No
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Application to parameter fitting

\,

Example 14_mcfit2.ipynb
Parameter distributions after N = 100 000 iterations (skipping first 1000)

Lifetime Normalization Background level
3.0
2.5 0.4
>
2
@
g *° 0.3
g .
215
§ 0.2
3 1.0
o
0.1
0.5
0.0 0.000 - 0.0-
20 22 24 26 28 30 32 350 375 400 425 450 475 500 525 -1

T [ué] .., No .
We can extract expected parameter values with uncertainties...
but also identify problems, e.g. find multiple solutions...
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Application to parameter fitting

Example 14_mcfit2.ipynb

Parameter distributions after N = 100 000 iterations (skipping first 1000)
Including background level constraint

Lifetime Normalization Background level
4.0 0,025 1.0
3.5
230 0.020 0.8
n
5 2.5
° 0.015 0.6
£20
=
0.4
g 1.5 0.010
e
a 1.0
0.005 0.2
0.5

0.0 0.000 0.0
2.0 2.2 2.4 2.6 2.8 360 380 400 420 440 460 480 500 25 3.0 35 40 45 50 55 6.0
ubg

T [ué] .., No ..
We can extract expected parameter values with uncertainties. ..

but also identify problems, e.g. find multiple solutions...
January 23, 2025
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Application to parameter fitting

Example
Nominal solution from Markov Chain (mean values of parameters)

T =2.488 + 0.142

Markov chain fit Nmc = 100000 x? = 18.81/27
102
wn
]
c
3 101
O 10 ‘ ‘
10° ‘
0 2 4 6 8 10 12 14

Decay time [us]

Without background constraint
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Application to parameter fitting 5

14_mcfit3.ipynb

Example
But we can also get the probability distribution of the fit results:

Markov chain fit Nmc = 100000 x? = 18.81/27 T =2.488 + 0.142

102

Counts
(=
o
2
11/ -
L] —

10°

0 2 4 6 8 10 12 14
Decay time [us]

Last 100 chain elements

Statictical analysis 14 January 23, 2025

A.F.Zarnecki


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_mcfit3.ipynb

'

A
[ NY»

Application to parameter fitting

Example 14_mcfit3.ipynb

But we can also get the probability distribution of the fit results:

T =12.488 + 0.142

Markov chain fit Nmc = 100000 x? = 18.81/27
102
]
5
o 1
S 10 { ‘
10° }
0 2 4 6 8 10 12 14
Decay time [us]

Last 1000 chain elements
January 23, 2025

Statictical analysis 14

A.F.Zarnecki


https://colab.research.google.com/github/zarnecki/SAED/blob/2024_2025/14_Markov_Chains/14_mcfit3.ipynb

\,
8 g
W

Application to parameter fitting 5

14_mcfit3.ipynb

Example
But we can also get the probability distribution of the fit results:

T=2.323+0.108

Markov chain fit Nmc = 100000 2 = 23.91/27
102

]

c

3

O 101

10°

0 2 4 6 8 10 12 14

After adding background constraint Decay time [us]
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box"

Markov chain history

[ .
275 ) PR 1 1
£250 " s S .',."_f? fs&{ﬁ.@
L ; . MR SECOCRIHE 1 LAt e
E . : :

10° 10! 10? 10° 104

22U N®©O

SoS 90900

SoS oSS
3

vel Normalization

2 3.00

o 100 10 102 10° 10°
Iteration

It converges fast with the proper choice of parameter variation steps
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box"

Markov chain history

Normalization
o
3
3

Background level

10° 10! 10% 10° 10¢
Iteration

Convergence can be very slow, if parameter steps too small...
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box"

Markov chain history

Y20 . I R T
10° 101 10° 10° 10¢ 10°
Iteration

Convergence can be very slow, if parameter steps too small...
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Application to parameter fitting

Example
Markov Chain Monte Carlo does not work “out of the box"

Markov chain history

Normalization

Background level

10° 101 10° 10° 10¢ 10°
Iteration

Fluctuations significantly increased, if steps are too large...
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Application to parameter fitting -3

Example (2)

200 events were measured in the electron scattering experiment.
The expected distribution corresponds to that of the single slit diffraction:

p(x) = Ca: <suna(><—><o)>2

a(x —xo)
where a is the scaling factor and xp is the position of the maximum.

Distribution of measurement points

4 e
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Application to parameter fitting -3

Example (2)

200 events were measured in the electron scattering experiment.
The expected distribution corresponds to that of the single slit diffraction:

p(x) = Ca: <suna(><—><o)>2

a(x —xo)
where a is the scaling factor and xp is the position of the maximum.

Distribution of the measured values

o o o o o
PR NN W
o wu o u o

Fraction per unit value
o
=)
w

o
=
S

25 10 -5 0 5 10 15
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Application to parameter fitting

Example (2)
Standard unbinned likeligood fit fails for this problem! Markov Chain Monte Carlo works...

Markov chain history

110
1.05
.
S 1.00
& 0.95
© 0.90
3 0.85
0.80 P T Mpr—

0.75

0.3
0.2

01y . . —_—

Position
I

0.0 -

10° 10t 10? 10° 104

It converges fast with the proper choice of parameter variation steps
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Application to parameter fitting

Example (2)
Standard unbinned likeligood fit fails for this problem! Markov Chain Monte Carlo works...

Markov chain history

0.85
0.80 e A

5075 LR R AN L

S

8070

© 065

2 0.60
055
0.50

0.4
0.3
0.2
0.1
0.0

Position

-0.1

10° 10t

It converges fast with the proper choice of parameter variation steps
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Application to parameter fitting > .

Example (2)
Standard unbinned likeligood fit fails for this problem! Markov Chain Monte Carlo works...

Scale factor Position

80+
2
2 60
(]
©
2
= 404
©
Q
[
8- 201

0.76 0.78

N = 100'000
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Application to parameter fitting > .

Example (2)
Standard unbinned likeligood fit fails for this problem! Markov Chain Monte Carlo works...

Scale factor Position

Probability density
= N w B w [«2] ~l o)
e e 222 22 2

0- 0-

0.82 0.84 -02 -01 00 01 0.2 03 04 05

0.76 0.78 0.80

a X
N = 1'000'000  Likelilhood has many local maxima = very difficult for standard algorithms!
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Markov Chain Monte Carlo ’im

Final remarks

Markov Chains are powerful tools to solve many problems that are difficult to approach
“directly”, using other numerical techniques

However, it is crucial to make sure they converge, before using their output for the analysis.
Algorithm tuning may be required...

January 23, 2025
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Markov Chain Monte Carlo ’im

Final remarks

Markov Chains are powerful tools to solve many problems that are difficult to approach
“directly”, using other numerical techniques

However, it is crucial to make sure they converge, before using their output for the analysis.

Algorithm tuning may be required...

Only the simplest approach was presented, many more advanced algorithms exist for more
effective step generation. Probability p(X(tt1)|X (1)) does not need to be uniform!
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Markov Chain Monte Carlo ’im

Final remarks

Markov Chains are powerful tools to solve many problems that are difficult to approach
“directly”, using other numerical techniques

However, it is crucial to make sure they converge, before using their output for the analysis.

Algorithm tuning may be required...

Only the simplest approach was presented, many more advanced algorithms exist for more
effective step generation. Probability p(X(tt1)|X (1)) does not need to be uniform!

Events generated with Markov Chain MC are not independent!
One should not use subsequent events together in the analysis (eg. for background estimates)
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Statistical analysis of experimental data > .

Markov Chains

@ Final exam
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Statistical Analysis of Experimental Data > .

Final exam

As described in the syllabus, assessment will be based on home exercises and the written exam.
50% of points collected from exercises and exam (with same weights) required to pass.

For the written exam, you will have to solve five problems similar to those in homeworks
(maybe a little bit more complex, as you get 13 points for each).

Problems will be put on Kampus on Sunday, February 2nd, and you should upload solutions to
Kampus (each one as a separate file) within one week, till Sunday, February 9th (23:55).

By uploading the solutions to Kampus you declare that they resulted from your own work and
that you have not shared nor discussed them with anyone.
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