$\begin{array}{l} \mbox{Measurement of angular distributions for} \\ \gamma\gamma \rightarrow h \rightarrow ZZ \rightarrow ll \; jj \\ \rightarrow WW \rightarrow 4j \end{array}$

Workshop of the Extended ECFA/DESY Study Amsterdam, April 2003

<u> Outline</u>

- Introduction
- Resolution and acceptance
- $h \rightarrow ZZ$ results (new: background contribution)
- $h \rightarrow WW$ results (new)
- Summary

Introduction

Angular distributions

5 angles:

- polar angle θ_Z for $h \to ZZ$ decay
- polar angle θ_l for $Z \to l^- l^+$ decay
- polar angle $heta_j$ for $Z o q \overline{q}$ decay
- azimuthal angles between higgs and Z decay planes: ϕ_l and ϕ_j

angle between two planes: $\Delta \phi = \phi_j - \phi_l$

S.Y.Choi, D.J.Miller, M.M.Muhlleitner, P.M. Zerwas, Phys.Lett.B553(2003)61, hep-ph/0210077

D.J.Miller, Prague, November 2002:

Measurement of angular distributions ⇒ higgs spin and parity

 \Rightarrow Can PC measure this ?!

Simulation

 $\gamma\gamma$ spectra from **CompAZ**, $\sqrt{s_{ee}} = 270 - 500 \text{ GeV}$

higgs events generated with PYTHIA 6.214

 $\gamma \gamma \rightarrow h \rightarrow ZZ \rightarrow e^+ e^- q\bar{q} / \mu^+ \mu^- q\bar{q}$ $\gamma \gamma \rightarrow h \rightarrow WW \rightarrow q\bar{q} q\bar{q}$ $m_h = 170 - 350 \text{ GeV}$

PYTHIA properly simulates all angular distributions for SM higgs

"pseudoscalar" higgs

- \Rightarrow reweighting of angular distributions
 - (σ and BR assumed same as for h)
- angular distributions for background
 - ⇒ PYTHIA + reweighting

detector simulation with SIMDET v. 3.01

α 100 b 80 170 GeV

Cross sections for $J_Z = 0$:

NŻK

G.Belanger, F.Boudjema, Phys.Lett.B288 (1992) 210; D.A.Morris, et al., Phys. Lett. B323 (1994) 421; I.F.Ginzburg, I.P.Ivanov, Phys. Lett. B408 (1997) 325.

Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ/WW \rightarrow lljj$ / 4j

Introduction

Selection

$h \rightarrow ZZ \rightarrow lljj$ event selection

- balanced transverse momentum: $P_T/E_T < 0.1$
- 2 leptons (e^{\pm} or μ^{\pm}) + 2 hadronic jets
- cut on lepton and jet angle $\cos \theta_l < 0.98$, $\cos \theta_{jet} < 0.95$
- leptons and jets reconstruct into two Z° with probability $P_Z > 0.001$ based on reconstructed invariant mass
- invariant mass cut optimized for background rejection

P. Nieżurawski, A.F. Żarnecki, M. Krawczyk, Study of the Higgs-boson decays into $W^+W^$ and ZZ at the Photon Collider JHEP 0211 (2002) 034 [hep-ph/0207294] Invariant mass cut for $m_h=250$ GeV:

SM higgs selection efficiency ~40% (for $ZZ \rightarrow q\bar{q} l^+ l^-$ events, $l = \mu, e$) $\times BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\%$

Measurement of angular distributions for $\gamma \gamma \rightarrow h \rightarrow ZZ/WW \rightarrow lljj / 4j$

Resolution

Expected accuracy of decay angles measurement:

All angles can be measured with high accuracy

Shape described by Breit-Wigner distribution

A.F.Żarnecki

Acceptance

Selection efficiency as a function of the azimuthal angle ϕ_q

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

similar pattern observed for $Z \rightarrow l^- l^+$

Acceptance losses for $\phi = 0, \pi, ...$ are due to the jet/lepton going in the beam direction

Selection efficiency for $\phi_j \approx 0$:

red lines: $\cos \theta_i^{LAB} = \pm \cos \theta_Z^{LAB}$

Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ/WW \rightarrow lljj$ / 4j

Acceptance

Nonuniformity of selection efficiency in $\Delta \phi$ largest for small m_h

 m_h = 200 GeV, $\sqrt{s_{ee}}$ =305 GeV

 m_h = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

Effect much stronger for background events and pseudoscalar higgs due to different $\cos \theta_{j,l}$ distribution

Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ/WW \rightarrow lljj$ / 4j

Measured $\Delta \phi$ distribution for $m_h = 200 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=305 \text{ GeV}$, $\mathcal{L} = 610 fb^{-1}$ $\Rightarrow \sim 675 \text{ reconstructed SM higgs events expected} + 145 ZZ$ background events

Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ/WW \rightarrow lljj$ / 4j

Measured $\Delta \phi$ distribution for $m_h = 300 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=418 \text{ GeV}$, $\mathcal{L} = 830 fb^{-1}$ $\Rightarrow \sim 635 \text{ reconstructed SM higgs events expected} + 415 ZZ$ background events

Measurement of angular distributions for $\gamma\gamma
ightarrow h
ightarrow ZZ/WW
ightarrow lljj$ / 4j

Measured $\Delta \phi$ distribution for $m_h = 350 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=500 \text{ GeV}$, $\mathcal{L} = 1000 \text{ fb}^{-1}$ $\Rightarrow \sim 345 \text{ reconstructed SM higgs events expected} + 410 ZZ$ background events

Measurement of angular distributions for $\gamma\gamma
ightarrow h
ightarrow ZZ/WW
ightarrow lljj$ / 4j

Selection

$h \rightarrow WW \rightarrow 4j$ event selection

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets
- cut jet angle

 $\cos \theta_{jet} < 0.95$

- jets reconstruct into two W^{\pm} with probability $P_W > 0.001$ based on reconstructed invariant mass
- invariant mass and higgs decay angle cuts optimized for background rejection

Invariant mass cut for m_h =170 GeV:

SM higgs selection efficiency $\sim 30\%$ (for $WW \rightarrow q\bar{q}q\bar{q}$ events) $\times BR(WW \rightarrow q\bar{q}q\bar{q}) \approx 46.9\%$

Measured $\Delta \phi$ distribution for $m_h = 170 \text{ GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}=270 \text{ GeV}$, $\mathcal{L} = 540 fb^{-1}$ $\Rightarrow \sim 14 400 \text{ reconstructed SM higgs events expected} + 48 000 WW background events$

Measurement of angular distributions for $\gamma\gamma
ightarrow h
ightarrow ZZ/WW
ightarrow lljj$ / 4j

Large background contribution subtracted \Rightarrow systematic effects can be very important !

Conclusions

Detector effects are important

 \Rightarrow significantly modify angular distributions...

Measurement of higgs parity possible:

- with $h \rightarrow ZZ \rightarrow ll \; jj$, for $m_h < 300 \; {\rm GeV}$
- with $h \rightarrow WW \rightarrow 4j$, for $m_h < 250 \text{ GeV}$

Analysis in progress. Still to be studied:

- other angular distributions (θ_j, θ_l)
- other background contributions (e.g. full $\gamma\gamma \rightarrow 4f$)
- systematic uncertainties (crucial for $h \rightarrow WW$)

 $rac{\gamma\gamma
ightarrow h
ightarrow ZZ/WW}{
m (hep-ph/0207294)}$

Angular distributions ⇒ higgs spin and parity (see e.g. hep-ph/0210077)

Detector effects important selection efficiency in $\Delta \phi$ $m_h = 300$ GeV, $\sqrt{s_{ee}} = 418$ GeV

