

Higgs studies at the TESLA Photon Collider *Extended ECFA/DESY Study*

P.Nieżurawski, A.F.Żarnecki, M.Krawczyk

Warsaw University

Higgs at the Photon Collider

Introduction

Higgs at the Photon Collider

- Introduction
- Higgs boson at the Photon Collider

- Introduction
- Higgs boson at the Photon Collider
 - $\Gamma(h \rightarrow \gamma \gamma)$ and search for new physics

- Introduction
- Higgs boson at the Photon Collider

 $\Gamma(h \to \gamma \gamma)$ and search for new physics measurement of $h \to \gamma \gamma$ amplitude phase

- Introduction
- Higgs boson at the Photon Collider

 $\Gamma(h \to \gamma \gamma)$ and search for new physics measurement of $h \to \gamma \gamma$ amplitude phase

Photon Collider luminosity spectrum - CompAZ

- Introduction
- Higgs boson at the Photon Collider $\Gamma(h \rightarrow \gamma \gamma)$ and search for new physics
 - measurement of $h \rightarrow \gamma \gamma$ amplitude phase
- Photon Collider luminosity spectrum CompAZ
- Study of light Higgs boson production $\Gamma_{\gamma\gamma}$ measurement from $h \rightarrow b\bar{b}$

- Introduction
- Higgs boson at the Photon Collider $\Gamma(h \rightarrow \gamma \gamma)$ and search for new physics

measurement of $h\to\gamma\gamma$ amplitude phase

Photon Collider luminosity spectrum - CompAZ

- Study of light Higgs boson production $\Gamma_{\gamma\gamma}$ measurement from $h \to b\bar{b}$
- Study of heavy Higgs boson production $\Gamma_{\gamma\gamma}$ and phase measurement from $h \to W^+W^-$

- Introduction
- Higgs boson at the Photon Collider

 $\Gamma(h \rightarrow \gamma \gamma)$ and search for new physics measurement of $h \rightarrow \gamma \gamma$ amplitude phase

Photon Collider luminosity spectrum - CompAZ

- Study of light Higgs boson production $\Gamma_{\gamma\gamma}$ measurement from $h \to b\bar{b}$
- Study of heavy Higgs boson production $\Gamma_{\gamma\gamma}$ and phase measurement from $h \to W^+W^-$
- Conclusions

Why do we need Photon Collider ?

Why do we need Photon Collider ? Photon-photon collisions:

Higgs at the Photon Collider

Why do we need Photon Collider ?

Photon-photon collisions:

• production of a charged particle pairs $\gamma\gamma \rightarrow P^+P^-$

Why do we need Photon Collider ? Photon-photon collisions:

• production of a charged particle pairs $\gamma\gamma \rightarrow P^+P^-$

cross sections much higher than in e^+e^- !

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma \gamma \rightarrow Z^{\circ} Z^{\circ}$

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma\gamma \rightarrow Z^{\circ}Z^{\circ}$ loop contributions from ALL charged particles !

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma \gamma \rightarrow Z^{\circ}Z^{\circ}$ loop contributions from ALL charged particles !
- resolved photon interactions

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma\gamma \rightarrow Z^{\circ}Z^{\circ}$ loop contributions from ALL charged particles !
- resolved photon interactions
 QCD test ground

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma \gamma \rightarrow Z^{\circ}Z^{\circ}$ loop contributions from ALL charged particles !
- resolved photon interactions
 QCD test ground
- production of single C = + states (eg. Higgs)

- production of a charged particle pairs $\gamma \gamma \rightarrow P^+P^$ cross sections much higher than in e^+e^- !
- production of a neutral particle pairs, $\gamma\gamma \rightarrow Z^{\circ}Z^{\circ}$ loop contributions from ALL charged particles !
- resolved photon interactions
 QCD test ground
- production of single C = + states (eg. Higgs) resonant Higgs production similar to Z° in e^+e^-

Why do we need Photon Collider ?

Comparison of SM Higgs boson production cross sections:

Why do we need Photon Collider ?

Comparison of SM Higgs boson production cross sections:

 $\gamma\gamma$ cross section order of magnitude higher

$$\sigma = \frac{1}{\mathcal{L}_{\gamma\gamma}} \frac{d\mathcal{L}_{\gamma\gamma}^{J_z=0}}{dW_{\gamma\gamma}} \cdot \frac{4\pi^2 \Gamma_{\gamma\gamma}}{M_h^2}$$

Introduction Why do we need Photon Collider ?

Comparison of SM Higgs boson production cross sections:

 $\gamma\gamma$ cross section order of magnitude higher

Warszawa

$$\sigma = \frac{1}{\mathcal{L}_{\gamma\gamma}} \frac{d\mathcal{L}_{\gamma\gamma}^{J_z=0}}{dW_{\gamma\gamma}} \cdot \frac{4\pi^2 \Gamma_{\gamma\gamma}}{M_h^2}$$

expected $\gamma\gamma$ luminosity similar to e^+e^-

Higgs boson at PC

Two-photon width of the Higgs boson $\Gamma_{\gamma\gamma}$ is sensitive to all massive and charged particles in the loop:

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 M_h^3}{128\sqrt{2} \pi^3} \cdot |\mathcal{A}|^2$$

Warszawa

where:

 $\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \dots$ two-photon amplitude

amplitude \mathcal{A} is real imaginary contribution from light fermions - very tiny

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H > 2m_W$ W contribution is complex

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H > 2m_W$ W contribution is complex

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

Phase

For $m_H \leq 2m_W$ amplitude \mathcal{A} is real

For $m_H > 2m_W$ W contribution is complex $\mathcal{A} = |\mathcal{A}| \cdot e^{i\phi}$ - phase $\phi_{\gamma\gamma} \neq 0$ $\Gamma_{\gamma\gamma} \sim Im(\mathcal{A})^2 + Re(\mathcal{A})^2$

New particles

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$

M _h = 160. GeV M _L = 800. GeV	lm(A)
SM W t L Sum	Re(A)

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$ For $m_H > 2m_W$ both $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ sensitive to new particles

New particles

lm(A)
Re(A)

<u>Warszawa</u>

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$ For $m_H > 2m_W$ both $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ sensitive to new particles

M _h = 220. GeV M _L = 800. GeV	lm(A)
— SM	Re(A)
— w	
— t	
— L	
— Sum	
Δφ	

New particles

Expected contribution from new heavy particle - real

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$ For $m_H > 2m_W$ both $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ sensitive to new particles

for $M_h \sim 350 \text{ GeV}$ amplitude mostly imaginary: $Re(\mathcal{A}) \sim 0$

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$ For $m_H > 2m_W$ both $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ sensitive to new particles

for $M_h \sim 350 \text{ GeV}$ amplitude mostly imaginary: $Re(\mathcal{A}) \sim 0$ $\Rightarrow \Gamma_{\gamma\gamma}$ little sensitive to new particles !!!

For $m_H \leq 2m_W$ change in $\Gamma_{\gamma\gamma}$ only $\phi_{\gamma\gamma} = 0$ For $m_H > 2m_W$ both $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ sensitive to new particles

for $M_h \sim 350 \text{ GeV}$ amplitude mostly imaginary: $Re(\mathcal{A}) \sim 0$ $\Rightarrow \Gamma_{\gamma\gamma}$ little sensitive to new particles !!! \Rightarrow measure $\phi_{\gamma\gamma}$?

Contribution to $\Gamma_{\!\gamma\gamma}\,\,$ from new heavy charged particles with mass ${\sim}800~GeV$

New particles

Significant deviations in $\Gamma_{\gamma\gamma}$ for small M_h

Small effects for $M_h \sim 350 \text{ GeV}$

New particles

Contribution to $\phi_{\gamma\gamma}$ from new heavy charged particles with mass $\sim 800~\text{GeV}$

No deviations in $\phi_{\gamma\gamma}$ for light Higgs $M_h < 160$ GeV.

Large effects expected for heavy Higgs

How can we measure it?

Higgs decays

Higgs decays

Higgs at the Photon Collider

Higgs decays

"resonant" signal

"resonant" signal

large "direct", non-resonant bg.

 $h \to W^+ W^-$

"resonant" signal

large "direct", non-resonant bg.

Large interference effects \Rightarrow destructive interference dominates above $\sim 200 \text{ GeV}$

Higgs at the Photon Collider

\Rightarrow can be measured !

Higgs at the Photon Collider

$h \to ZZ$

Non-resonant background only at loop level

$h \to ZZ$

Non-resonant background only at loop level

$h \to ZZ$

Non-resonant background only at loop level

small interference effects \Rightarrow not sensitive to $\phi_{\gamma\gamma}$

Higgs at the Photon Collider

High energy, high intensity photon beam can be obtained using Compton backscattering of laser light off the high energy electrons

Photon Collider

Compton scattering:

backscattering:

Photon Collider

High energy, high intensity photon beam can be obtained using Compton backscattering of laser light off the high energy electrons

PC: natural extension of all e^+e^- linear collider projects including TESLA

To get very high $\gamma\gamma$ luminosity we need very powerful lasers and strongly focused electron beams.

Photon Collider

To get very high $\gamma\gamma$ luminosity we need very powerful lasers and strongly focused electron beams. Higher order processes become important.

Photon Collider

Photon Collider

To get very high $\gamma\gamma$ luminosity we need very powerful lasers and strongly focused electron beams. Higher order processes become important. Compton formula fails to describe the luminosity spectrum

Compton formula corrected for:

Compton formula corrected for:

 nonlinear effects

Compton formula

- corrected for:
- nonlinear effects
- angular correlations

Compton formula

- corrected for:
- nonlinear effects
- angular correlations
- two photon scattering

Higgs at the Photon Collider

Compton formula

- corrected for:
- nonlinear effects
- angular correlations
- two photon scattering
- electron rescattering

Higgs at the Photon Collider

Parametrization of the photon energy spectrum

Compton formula

- corrected for:
- nonlinear effects
- angular correlations
- two photon scattering
- electron rescattering

\Rightarrow CompAZ

Higgs at the Photon Collider

TESLA Photon Collider luminosity spectra parametrization Very good description of the high energy part

$\gamma\gamma$ invariant mass

polarization

