Report from Gamma-Gamma group

A.F.Zarnecki, Warsaw University

Photon Collider @ ILC

3 sessions one joined with SUSY and Gen

11 talks

+ 3 talks in other sessions

New studies and results + updated results of realistic simulations

Physics Highlights of Photon Collider

A.Stahl, LCWS'2002

SM Higgs

 $\Gamma(h \rightarrow \gamma \gamma) \times BR(h \rightarrow bb)$

Aura Rosca

Improved background analysis based on SHERPA (CERN-TH/2003-284)

- Measure the two-photon partial width:
 - Contribution to the two photon decay width from any kind of massive charged particles.
 Deviation of the partial width from Standard Model prediction:
 - Evidence for new physics;
 - Can be directly compared to predictions of alternative models (MSSM, NMSSM, general 2HDM).

Sherpa correctly reproduces jet structure for J=0 events

SM Higgs

$\Gamma(h \rightarrow \gamma \gamma) \times BR(h \rightarrow b\overline{b})$

Aura Rosca

B-tag cut on two fastest jets allows rejection of J=0 bb background!

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) BR(h \to b\overline{b} \right]}{\left[\Gamma(h \to \gamma \gamma) BR(h \to b\overline{b}) \right]} = 1.5\%$$
was 1.9% with Pythia

SM Higgs Piotr Niezurawski

$\Gamma(h \rightarrow \gamma \gamma) \times BR(h \rightarrow b\overline{b})$

Overlying (pile-up) events + vertex smearing due to beam crossing angle

 $\alpha_c = 34 \text{ mrad}$

Primary vertex distribution

	Bunch	Vertex
σ_x	140 nm	3.6 <i>µ</i> m
σ_y	15 nm	11 nm
σ_z	0.3 mm	0.2 mm

Tighter b-tag cuts needed

SM Higgs Piotr Niezurawski

 $\Gamma(h \rightarrow \gamma \gamma) \times BR(h \rightarrow bb)$

Corrected mass distribution for $M_h = 120 \text{ GeV}$

 $W_{\rm corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E+P_T)}$

precision of $\Gamma_{\gamma\gamma} imes BR(h o b\overline{b})$

MSSM Higgs $\Gamma(H/A \rightarrow \gamma\gamma) \times BR(H/A \rightarrow bb)$ Piotr Niezurawski

30

precision of $\Gamma_{\gamma\gamma} \times BR(h \to b\overline{b})$

Corrected mass distribution for $M_A = 300 \text{ GeV}$

 $\tan \beta = 7, M_2 = \mu = 200 \text{ GeV}$

Higgs in CP violating SUSY

Jan Kalinowski

H-A mixing

diagonalize the complex matrix given by the Weisskopf-Wigner sum

$$\mathcal{M}_c^2 = M^2 - iM\Gamma$$

[Choi, Liao, Zerwas, JK, hep-ph/0407347]

Interesting physics case the decoupling limit: $m_A^2 \gg |\lambda_i| v^2$

- H_1 must be the CP-even SM–like \Longrightarrow it decouples from the H/A system
- H/A almost degenerate \Longrightarrow mixing between H and A can be finite and large

$$\mathcal{M}_{c}^{2} = \begin{bmatrix} m_{H}^{2} - im_{H}\Gamma_{H} & \delta m_{HA}^{2} \\ \delta m_{HA}^{2} & m_{A}^{2} - im_{A}\Gamma_{A} \end{bmatrix} \Longrightarrow \mathcal{M}^{2} = C \,\mathcal{M}_{c}^{2} \, C^{-1}$$

• the C and the complex mixing angle θ are given by

[Güsken, Kühn, Zerwas '85]

$$C = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}, \quad X \equiv \frac{1}{2} \tan 2\theta = \frac{\delta m_{HA}^2}{m_H^2 - m_A^2 - i(m_H \Gamma_H - m_A \Gamma_A)}$$

Higgs in CP violating SUSY Jan Kalinowski H-A mixing

Large CP asymmetries expected both in production and decay

Higgs formation in polarized $\gamma\gamma$ collisions

polarization of top quarks in $H_{m i} \Rightarrow tar t$

CP-even and CP-odd asymmetries

0.5

0

-0.5

-405

$$\mathcal{A}_{ ext{lin}} = rac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}} \hspace{0.5cm} ext{and} \hspace{0.5cm} \mathcal{A}_{ ext{hel}} = rac{\sigma_{++} - \sigma_{--}}{\sigma_{++} + \sigma_{--}}$$

 $[\phi^*$ – angle between $tar{t}$ decay planes]

CP violation in generic model A.F.Zarnecki H-A mixing

We consider generic tensor couplings of a Higgs boson \mathcal{H} to ZZ and W^+W^- :

$$g_{\mathcal{H}ZZ} = ig \frac{M_Z}{\cos \theta_W} \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_Z^2} \right)$$
$$g_{\mathcal{H}WW} = ig M_W \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_W^2} \right)$$
$$\text{with: } \lambda_H = \lambda \cdot \cos \Phi_{CP} \quad \lambda_A = \lambda \cdot \sin \Phi_{CP}$$

Both $\Delta \phi$ and ζ distributions clearly distinguish between scalar and pseudoscalar higgs.

CP violation in generic model Measured $\Delta \phi_{ZZ}$ distribution:

Measured ζ_{ZZ} distribution:

A.F.Zarnecki H-A mixing

2 Lepton 2 Quark Production in 2 Photon Collisions

Wilfred da Silva

semi-analytic computation without approximation

study of luminosity measurement using the 2 lepton 2 quark channel

LO predictions for $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f+\gamma$ Markus Roth, Alex Bredenstein – EW+AT

Motivation for dedicated MC code:

 $\gamma\gamma
ightarrow WW$

- one of the largest cross sections
- contains gauge boson couplings γWW and γγWW
 (limits on anomalous couplings)
- if $M_{
 m H}\gtrsim 160\,{
 m GeV} \Rightarrow \gamma\gamma
 ightarrow {
 m H}
 ightarrow {
 m WW}$
- sensitive on extra dimensions

Features of the calculation:

- Lowest-order prediction for all processes $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f + \gamma$ (including gluon-exchange diagrams)
- Monte Carlo generator available upon request
- Photon beam spectrum in the parametrization of COMPAZ implemented
- Non-standard triple- and quartic-gauge-boson couplings and an effective γγH coupling can be optional included.

LO predictions for $\gamma\gamma \rightarrow 4f$ and $\gamma\gamma \rightarrow 4f + \gamma$

Markus Roth, Alex Bredenstein – EW+AT

Good agreement with MADGRAPH & WHIZARD

With photon spectrum

Limits on anomalous triple couplings

$$\sqrt{s_{ee}} = 500 \,\text{GeV} \quad \int Ldt = 100 \,\text{fb}^{-1}$$

TGCs at a $\gamma\gamma$ – collider at **TESLA**

Jadranka Sekaric (EW+AT)

 $\gamma\gamma \to W^+W^- \to q\bar{q}\,q\bar{q}$

Promising channel for $\kappa\gamma - \lambda\gamma$ measurements: $\Delta\kappa\gamma$, $\Delta\lambda\gamma \sim 10-4$

Anomalous couplings contribute to W_LW_L \rightarrow large deviations expected!

Selectron production in e_γ

Alexander Oh

eγ collider is discovery machine if selectron mass lies inbetween $0.5 \sqrt{s_{ee}} < m < 0.8 \sqrt{s_{ee}}$

Measured electron momentum:

Selectron production in $e\gamma$

Determination of SUSY BRs Huber Nieto-Chaupis

SHERPA + PYTHIA + SIMDET

Pile-up events included

Much richer structure helps us to constrain process kinematics \Rightarrow

$$ilde{\mu}^{\pm}_{
m L} \rightarrow \mu^{\pm} ilde{\chi}^{0}_{
m l}$$

Statistical precision ~2%

For slepton $\tilde{\tau}_1$ analysis: ~7%

• Sleptons : $\widetilde{\mu}_{L}$ analysis

Determination of SUSY BRs Huber Nieto-Chaupis

4 muon final state

Low energy muons from cascade decays

Chargino decays

 $\Delta BR(\tilde{\chi}_{1}^{\pm} \rightarrow W^{\pm} \tilde{\chi}_{1}^{0}) = 8.2\% (250 \text{ GeV})$ 5.7% (300 GeV)

Synergy with LHC and LC

A.F.Zarnecki (Higgs+Loopverein session tomorrow)

Measurements at LHC, LC and Photon Collider are complementary, being sensitive to different combinations of Higgs-boson couplings

χ

Synergy with LHC and LC

A.F.Zarnecki (Higgs+Loopverein session tomorrow)

2HDM(II) with CP violation \Rightarrow determination of H-A mixing angle:

 $\langle \Delta \Phi_{HA} \rangle$ = 150 mrad

$\gamma\gamma$ technical work at Zeuthen

Design study for a laser cavity

- \bullet a laser cavity with a power enhancement around 100 can decrease the needed laser power by the same amount
- \bullet with the TESLA bunch structure the length of the cavity is 100 m and can be mounted around the detector
- to increase the conversion rate and to minimise the dead region the laser-beam crossing angle should be as small as possible
- if the mirrors cut into the laser beam the diffraction losses stay small, however the broadening of the focus is serious

$\gamma\gamma$ technical work at Zeuthen

- With a laser-beam crossing angle of 55 mrad and a laser power of 9 J the TDR parameters can be recovered
- However the alignment tolarances are tight
- Misalignment of focusing telescope:

γ technical work at Zeuthen

Detector and backgrounds

Background in the detector driven by

- \bullet large disruption angle of electron beam
- \bullet angle between outgoing beam and B-field

Background can be supresses with tungsten masks

However then on the level as in e^+e^-

Beam dump for the Photon Collider

Valery Telnov

The scheme used in the simulation

The proposed scheme of the beam dump looks very attractive and can be used for all LC modes of operation.

The Photon Collider in the LC project

Valery Telnov

Letter submitted to:

International Steering Committee on Linear Colliders

Worldwide Study Organizing Committee

Special requirements for photon collider:

- Crossing angle > 30 mrad
- Horizontal and vertical emittances as small as possible
- Spot size at IP as small as possible
- •Beam dump
- •Detector design allowing replacement of elements

in the forward region

Space for laser lines and housing

Signed by: J.Gronberg, V.Telnov, T.Takahashi,

K.Cheung, A.De Roeck, M.Krawczyk, K.Mönig, M.Velasco