Search for Leptoquark Production and Lepton Flavour Violation A.F.Żarnecki

Warsaw University

Outline

- Introduction
 Leptoquark model
- Search for leptoquark pair-production DØ(#594), CDF(#490), OPAL(#731),
- Search for single leptoquark production OPAL(#726), H1(#105), ZEUS(#496)
- Search for effects of virtual leptoquark exchange H1(#99), L3(#192)

 \Leftarrow contributions covered in this talk

- p.2/23

Introduction

Leptoquarks:bosons (J=0,1) with lepton and baryon numbersInteractions:• strongcolor

- electroweak weak isospin and charge
- Yukawa l-q-LQ coupling λ

Buchmüller-Rückl-Wyler (BRW) model

- $SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance of SM
- lepton and baryon number conservation

fermion number F=0,2, branching ratio to $lq: \beta_{lq} = 0, \frac{1}{2}, 1$

Two parameters for each leptoquark (LQ): mass and Yukawa coupling

Predominantly by gg fusion \Rightarrow independent of λ \Rightarrow depends only on spin (scalar or vector) and β_{la}

New results from Run II:

- DØ: 41 pb⁻¹
- CDF: 72–76 *pb*⁻¹

D \emptyset : search for first generation leptoquarks $LQ \ LQ \to eejj$

Total transverse energy:

Cross section limit: (41 pb^{-1})

Second generation LQs ($\mu\mu jj$ channel): M > 157 GeV ($\beta_{\mu q} = 1$)

CDF : search for first generation leptoquarks $LQ \ LQ \ V\nu jj$

Leading jet E_T :

Cross section limit: (76 pb^{-1})

Pair-production at LEP

New **OPAL** results LQ mass Events (**d**) **OPAL** data 596 pb^{-1} , $\sqrt{s} = 189 - 209 \text{ GeV}$ kinematic fit γγ bkg 2f bkg LQ, M=90 GeV e^+e^-qq Pair-production $e^+e^- \rightarrow LQ \ LQ$: 3 2 s-channel γ or Z° exchange events \Rightarrow 1 0 80 e-60 100 LO M_{LO} (GeV) γ,Z LO q $\Lambda \Lambda$ Events (e) **OPAL** data 4f bkg LQ LQ γγ bkg 2f bkg e^+ e^+ 2.5 LQ, M=90 GeV $\mu^+\mu^- qq$ t-channel q exchange (1^{st} gen.) 1.5 events \Rightarrow 1 negligible for small λ 0.5 0 80 100 60 M_{LO} (GeV)

– p.7/23

Pair-production at LEP

Search in l^+l^-qq , $l\nu qq$ and $\nu\nu qq$ channels, for $l = e, \mu, \tau$ \Rightarrow for $\beta_{lg} = 1$ mass limits between 96 and 102 GeV, \Rightarrow for $\beta_{lq} = 0$ mass limits between 89 and 101 GeV depending on generation and leptoquark type

For leptoquarks with β_{lq} value depending on λ_L and λ_R :

 $S_{1/2}$ (scalar LQ with Q=-2/3) $V_{1/2}$ (vector LQ with Q=-1/3)

-p.8/23

PAL results for
$$\sqrt{s} = 189 - 209$$
 GeV

Single leptoquarks can be produced in $e\gamma$ collisions.

Dominant contribution from $\gamma
ightarrow q ar q$

LQ candidate mass $LQ \rightarrow eq$ search

- p.9/23

PAL results for
$$\sqrt{s} = 189 - 209$$
 GeV

Single leptoquarks can be produced in $e\gamma$ collisions.

Dominant contribution from $\gamma \rightarrow q\bar{q}$ and "resolved photon" diagram:

LQ candidate mass

- p.9/23

Mass dependent λ limits from OPAL

Strongest limits for |Q| = 1/3, 5/3, weakest limits for |Q| = 2/3

- p.10/23

Mass dependent λ limits from OPAL

Scalar

Strongest limits for |Q| = 1/3, 5/3, weakest limits for |Q| = 2/3

Vector

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

Direct *eq* interactions: Large SM background from NC and CC DIS ▶0.9 0.8 0.7 eq invariant mass vs 0.6 0.5 scattering angle \Rightarrow 0.4 $y = \frac{1}{2}(1 - \cos\theta^{\star})$ 0.3 0.2 (a) (b) LQ signal can be ≥0.9 e.v 0.8 LQ extracted from LQ 0.7 2-dimensional 0.6 q 0.5 event distribution 0.4 0.3 (c) (d) 0.2

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

mass [GeV

H1 and ZEUS results based on analysis of 1994-2000 HERA data

Events 10

10

 e^+p and e^-p DIS at $\sqrt{s} = 300-318$ GeV

Comparison of observed and expected invariant mass distributions

- p.12/23

ZEUS: $e^-p \rightarrow e^-X$

ZEUS

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

Combined analysis of NC and CC DIS events

 $\begin{array}{l} \textbf{Generic model} \\ \Rightarrow \beta \text{ VS } M_{LQ} \text{ limits} \\ \\ \text{SCALAR LEPTOQUARK } e^{t}u \rightarrow LQ \rightarrow e^{t}X \end{array}$

$\begin{array}{l} \mbox{BRW model} \\ \mbox{Improved limits for } \beta = 0.5 \mbox{ leptoquarks} \end{array}$

ZEUS

> - p.13/23

- p.13/23

Combined analysis of NC and CC DIS events

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

Search for virtual effects

Virtual LQ exchange can affect HERA, LEP and Tevatron measurements even for $M_{LQ} \gg \sqrt{s}$

LEP $e^+e^- \longrightarrow q \bar{q}$

Tevatron

 $q \bar{q} \longrightarrow l^+ l^-$

 e^+ $q^$ q^-

Interference with SM processes important

NC DIS at HERA:

→ _ p.14/23

Search for virtual effects

- p.15/23

 M_{LQ}/λ limits [TeV] (1st generation)

LQ	H1	L3*	ZEUS	ALEPH*	LEP2*	
S_0^L	0.71	1.24	0.75	2.13	2.16	
S_0^R	0.64	0.88	0.69	0.41	1.72	
$ ilde{S}^R_0$	0.33	0.40	0.31	0.57	0.67	
$S_{1/2}^{L}$	0.85	0.37	0.91	0.53	0.59	
$S_{1/2}^{\dot{R}}$	0.37	0.52	0.69	0.61	0.77	
$ ilde{S}_{1/2}^{L'}$	0.43	-	0.50	-	-	
S_1^L	0.49	0.89	0.55	1.48	1.19	
V_0^L	0.73	1.84	0.69	2.59	3.03	
V^R_0	0.58	0.53	0.58	0.49	0.55	
$ ilde{V}^R_0$	0.99	1.25	1.03	1.29	1.62	
$V_{1/2}^{L}$	0.42	0.84	0.49	0.81	1.00	
$V_{1/2}^{R}$	0.95	0.71	1.15	0.68	0.75	
$ ilde{V}_{1/2}^{L}$	1.02	0.55	1.26	0.55	0.58	
V_1^{L}	1.36	1.73	1.42	1.98	2.18	
* - calculated from M_{LO} limits for $\lambda = \sqrt{4\pi \alpha/0}$						

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

– p.16/23

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

- p.16/23

Limits on S_0^L (1st gen.) \sim 1 **H1** ZEUS Best constraints: DELPHI pair prod. \Rightarrow Tevatron ALEPH LEP2 Run I 10 virtual effects $\Rightarrow LEP$ **H1** single prod. \Rightarrow HERA -2 10 Complementary F Run $S_0^L(-1/3) \beta = 0.5$ constraints from different machines 10 100 200 300 400 M_{IO} [GeV]

> – p.16/23

LFV at HERA

→ _ p.17/23

OPAL analysis of LEP2 data (189-209 GeV)

Lepton Flavour Violation

STAS VARSPULENSS SAN HILL STAR

OPAL $e^+e^- \rightarrow e\mu$ event

Run:event 9298:115615 Ctrk(N= 2 Sump=168.4) Ecal(N= 4 SumE= 84.9)	Run:event 9298:115615 Ctrk(N= 2 Sump=168.4) Ecal(N= 4 SumE= 84.9)	10
Ebeam 94.32 Vtx (04 , $.08$, $.44$) Hcal(N= 4 SumE= 5.1) Muon(N= 1)	Ebeam 94.32 Vtx (04, .08, .44) Hcal(N= 4 SumE= 5.1) Muon(N= 1)	เดี
		ا ا ا

- p.19/23

New results from leptoquark searches at LEP, HERA and Tevatron

No signal of LQ production observed

Complementary limits from different processes and experiments

No signal of lepton flavour violation for charged leptons

Single $e^+e^- \rightarrow e\mu$ event from OPAL: interesting, but not a discovery yet...

D \emptyset : search for second generation leptoquarks $LQ \ LQ \ D \to \mu \mu j j$

Cross section limit: (41 pb^{-1})

Reconstructed mass:

For $\beta_{\mu q} = 1$ limit for scalar leptoquarks is M > 157 GeV (95% CL)

A.F.Żarnecki Search for Leptoquark Production and Lepton Flavour Violation

CDF: search for first generation leptoquarks

-p.22/23

ZEUS H1

3 ALEPH LEP2

 $S_{1/2}^{L}(-5/3) \beta=1$

400

M_{LQ} [GeV]

SUS

300

Run

D0+CDF

CDF Run I

200

Run

