Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ \rightarrow ll \; jj$

A.F. Żarnecki, Warsaw University

Warszawa

with P. Nieżurawski and M. Krawczyk

NŻK

Extended ECFA/DESY Study Gamma-Gamma Physics Working Group Intermediate Meeting at CERN February 13th 2003

<u>Outline</u>

- Introduction
- Resolution
- Acceptance
- Quark/anti-quark ambiguity
- Results

Introduction

Angular distributions

5 angles:

- polar angle θ_Z for $h \to ZZ$ decay
- polar angle θ_l for $Z \to l^- l^+$ decay
- polar angle $heta_j$ for $Z o q \overline{q}$ decay
- azimuthal angles between Higgs and Z decay planes: ϕ_l and ϕ_j

angle between two planes: $\Delta \phi = \phi_j - \phi_l$

S.Y.Choi, D.J.Miller, M.M.Muhlleitner, P.M. Zerwas, Phys.Lett.B553(2003)61, hep-ph/0210077

D.J.Miller, Prague, November 2002:

Measurement of angular distributions \Rightarrow Higgs spin and parity

⇒ detector effects ?!

Introduction

Simulation

 $\gamma\gamma$ spectra from **CompAZ**, $\sqrt{s_{ee}} = 500 \text{ GeV}$

Higgs events generated with PYTHIA 6.152 $\gamma\gamma \rightarrow h \rightarrow ZZ \rightarrow e^+e^-q\bar{q}, \ / \ \mu^+\mu^-q\bar{q}$ $m_h = 300 \text{ GeV}$

PYTHIA properly simulates all angular distributions for SM Higgs

pseudoscalar Higgs \Rightarrow reweighting events

detector simulation with SIMDET v. 3.01

$h \rightarrow ZZ \rightarrow lljj$ event selection

- balanced transverse momentum: $P_T/E_T < 0.1$
- 2 leptons (e^{\pm} or μ^{\pm}) + 2 hadronic jets
- cut on lepton and jet angle $\cos \theta_{l,jet} < 0.95$
- leptons and jets reconstruct into two Z° with probability $P_Z > 0.001$ based on reconstructed invariant mass

SM Higgs selection efficiency ~54% (for $ZZ \rightarrow q\bar{q} l^+ l^-$ events) $BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\% \ (l = \mu, e)$

Resolution

Expected accuracy of decay angles measurement

Shape described by Breit-Wigner distribution

Resolution

 $Z \to q\bar{q}$

Expected accuracy of decay angles measurement

All angles can be measured with high accuracy

A.F.Żarnecki

Acceptance

Selection efficiency as a function of decay angles for $Z \to q \bar q$

similar pattern observed for $Z \rightarrow l^- l^+$ decay angles

Acceptance

Acceptance losses for $\phi = 0, \pi, ...$ are due to the jet/lepton going in the beam direction

red lines: $\cos \theta_j^{LAB} = \pm \cos \theta_Z^{LAB}$

 \Rightarrow nonuniform acceptance in $\Delta \phi$:

Effect much stronger for pseudoscalar Higgs (different $\cos \theta_{j,l}$ distribution)

A.F.Żarnecki

Measurement of angular distributions for $\gamma\gamma \rightarrow h \rightarrow ZZ \rightarrow ll \; jj$

$q\bar{q}$ ambiguity

For $Z \rightarrow q\bar{q}$ one can not distinguish between quark and anti-quark jets $\Rightarrow 0 < \Delta \phi < \pi$ (measured from l^- to the "nearest" jet) with q/\bar{q} tagging

without q/\bar{q} tagging

Results

Expected $\Delta \phi$ distribution after detector simulation

without q/\bar{q} tagging (realistic)

Measured $\Delta \phi$ distribution after 1 year of PC running ($m_h = 300 \text{ GeV}, \sqrt{s_{ee}} = 418 \text{ GeV}, \mathcal{L} = 830 \text{ } fb^{-1}$) $\Rightarrow 825 \text{ reconstructed Higgs events expected}$

Measurement of angular distributions for $\gamma \gamma \rightarrow h \rightarrow ZZ \rightarrow ll \ jj$

Summary

Detector effects are very important

 \Rightarrow significantly modify angular distributions...

Measurement of Higgs parity possible, even with limited statistics expected for $h \to ZZ \to ll \; jj$

No background included in the study, yet !!! difficult, but has to be taken into account...