Determination of CP violating H-A mixing from $h_2 \rightarrow WW$, ZZ decays in 2HDM: PLC and comparison with LHC and LC.

<u> Dutline</u>

- Higgs boson production and decays to WW and ZZ at PLC JHEP 0211 (2002) 034 [hep-ph/0207294]
- Weak CP violation in SM-like 2HDM (II) at PLC hep-ph/0307175; hep-ph/0403138
- Comparison with LHC and LC

$$\gamma\gamma \rightarrow \mathcal{H} \rightarrow WW, ~ZZ$$

Higgs boson production at the Photon Collider

Production cross section is propor- In SM, dominant contributions to two-photon tional to the two-photon width amplitude A are due to W^{\pm} and top loops.

where:

$$\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \dots$$

two-photon amplitude

Phases of W^{\pm} and top contributions differ !

The phase of the amplitude $\phi_{\gamma\gamma}$ depends on Higgs-boson couplings !

Re(A)

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

We consider Higgs boson production and decays to WW/ZZ, for masses 200–350 GeV.

For resonant $\gamma \gamma \rightarrow h \rightarrow W^+W^-$ signal Large interference effects are expected in the considered mass range J=0100 [dd] N. f. H⁺... 170 GeV NŻK $W^{-}(Z)$ b 80 there is a large non-resonant bg. 300 GeV 60 200 GeV 250 GeV 40 no higgs with hiaas 20 0 200 250 300 350

Interference is sensitive to the phase of the two-gamma amplitude

W_{vv} [**GeV**]

$\gamma\gamma \to \mathcal{H} \to WW, \ ZZ$

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \rightarrow W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 – 1000 fb^{-1}

High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1}

for $\sqrt{s_{ee}}$ = 305 – 500 GeV

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$

 \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation

 \Rightarrow can be used for fast simulation and fitting

 $\gamma\gamma
ightarrow \mathcal{H}
ightarrow WW, ~ZZ$

Comparison of parametrization with full simulation:

 W^+W^-

ZZ

$$\gamma\gamma
ightarrow \mathcal{H}
ightarrow WW, ~ZZ$$

From the simultaneous fit to the observed W^+W^- and ZZ mass spectra both the two-photon width $\Gamma_{\gamma\gamma}$ and phase $\phi_{\gamma\gamma}$ can be determined.

 $\phi_{\gamma\gamma}$ with precision 40 – 120 mrad

JHEP 0211 (2002) 034 [hep-ph/0207294]

For SM: $\Gamma_{\gamma\gamma}$ with precision $\sim 4-9\%$

A.F.Żarnecki, ECFA/DESY workshop, November 2002, Praha (including systematic uncertainties)

SM-like 2HDM(II)

We consider SM-like solution B_h

Basic couplings, relative to SM:

$$\chi_{x} = g_{\mathcal{H}xx} / g_{\mathcal{H}xx}^{SM} \quad \mathcal{H} = h, H, A$$

$$\begin{matrix} h & H & A \\ \chi_{u} & -1 & -\frac{1}{\tan\beta} & -i\gamma_{5}\frac{1}{\tan\beta} \\ \chi_{d} & +1 & -\tan\beta & -i\gamma_{5}\tan\beta \\ \chi_{V} & \cos(2\beta) & -\sin(2\beta) & 0 \end{matrix}$$

CP conserving model:

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on $\tan\beta$ only. For charged Higgs boson couplings (loop contribution to $\Gamma_{\gamma\gamma}$) we set

$$M_{H^{\pm}} = 800 \; GeV \qquad \mu = 0$$

<u>CP violation</u>

2HDM(II)

Mass eigenstates of the neutral Higgs-bosons h_1 , h_2 and h_3 do not need to match CP eigenstates h, H and A.

We consider weak CP violation through a small mixing between H and A states:

$$\begin{array}{lll} \chi_X^{h_1} &\approx & \chi_X^h \\ \chi_X^{h_2} &\approx & \chi_X^H \cdot \cos \Phi_{HA} \ + \ \chi_X^A \cdot \sin \Phi_{HA} \\ \chi_X^{h_3} &\approx & \chi_X^A \cdot \cos \Phi_{HA} \ - \ \chi_X^H \cdot \sin \Phi_{HA} \end{array}$$

 \Rightarrow additional model parameter:

CP-violating mixing phase Φ_{HA}

We consider h_2 production and decays

2HDM(II)

Higgs boson h_2

Two-photon width and phase measurement for different $\tan \beta$ and Φ_{HA}

 1σ contours for 1 year of PC running statistical errors only M_h =120 GeV, M_{H^+} =800 GeV

Expected precision at PLC: (for small mixing i.e. $\Phi_{HA} \sim 0$)

- ~ 10 % for tan β
- ~ 100 mrad for Φ_{HA} (for low tan β)

2HDM(II)

Higgs boson h_2

Influence of systematic uncertainties on $tan \beta$ and Φ_{HA} measurement

Correlation between $\tan \beta$ and Φ_{HA} increases expected measurement errors

2HDM(II)

Higgs boson h_2

Solution B_h (with CP violation) \Rightarrow two free parameters (tan β and Φ_{HA})

Expected precision in $\tan \beta$ and Φ_{HA} determination at PLC (stat.+sys. errors)

CP violating H–A mixing angle can be precisely measured, if $\tan \beta$ is not too large Can we distinguish this case from CP conserving 2HDM (II) ? (with $\tan \beta$ and α)

2HDM (II)

CP or not CP

Can we distinguish between solution B_h with CP violation (tan β and Φ_{HA}) from CP conserving 2HDM (II) (also with two parameters: tan β and α) ? 2HDM (II) couplings determined (assuming CP conservation) at PLC

for h_2 (solution B_h) with $M_{h_2} = 250$ GeV and $\tan \beta = 0.5$

Determination of weak CP violation from $h_2 \rightarrow WW, ZZ$

Comparison

CP conserving 2HDM (II)

Can we profit from independent measurements at LHC and LC ?

Expected Higgs-boson *h* production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of basic relative couplings:

$\underline{\mathsf{LHC} \oplus \mathsf{LC} \oplus \mathsf{PLC}}$

Only from combined analysis of LHC, LC and PLC measurements we can establish CP violation in 2HDM (II)

Relative Higgs boson couplings determined from LHC, LC and PLC:

Determination of weak CP violation from $h_2 \rightarrow WW, ZZ$

Comparison

2HDM (II) sol. B_h (with weak CP violation)

Expected Higgs-boson production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of $\tan \beta$ and the CP violating mixing angle Φ_{HA}

Comparison

$\underline{\mathsf{LHC} \oplus \mathsf{LC} \oplus \mathsf{PLC}}$

Determination of $\tan \beta$ and the CP violating mixing angle Φ_{HA} for 2HDM (III) solution P_{A} with CP violation ($M_{A} = 250$ GeV(top $\beta = 0$

for 2HDM (II) solution B_h with CP violation ($M_{h_2} = 250$ GeV, tan $\beta = 0.5$):

Summary

Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$ and the phase of the $\mathcal{H} \to \gamma\gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured at the Photon Linear Collider.

Both $\tan \beta$ and the CP violating H–A mixing phase Φ_{HA} can be measured at PLC, assuming solution B_h of 2HDM (II).

In general case, combined analysis of LHC, LC and PLC measurements is needed to establish weak CP violation.