Improving photometry of the Pi of the Sky

Aleksander Filip Żarnecki for the Pi of the Sky Collaboration

IBWS2010, April 15, 2010

Pi of the Sky Collaboration

- Leading Polish academic and research units:
 - The Andrzej Soltan Institute for Nuclear Studies
 - Center for Theoretical Physics, Polish Academy of Science
 - Institute of Experimental Physics, University of Warsaw
 - Warsaw University of Technology
 - Space Research Center
 - Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
 - Cardinal Wyszynski University
 - Pedagogical University of Cracow

Cooperation with: G.Pojmański (Univ. of Warsaw; ASAS), Creotech

Scientific goals

Study objects varying on scales from seconds to months

- Search for optical counterparts of GRBs
 - wide field sky monitoring
 - high temporal resolution
 - automatic detection (independent on GCN alerts)
- Search for other flash like phenomena (supernovae, novae, flare stars explosions)
- Continuous monitoring of interesting objects (blasars, AGNs)
- Variable stars

 (identification and cataloging)

Prototype

• Las Campanas Observatory in Chile

Prototype

Installed in June 2004 new lenses from June 2006

- 2 CCD cameras 2000×2000
- Canon f=85mm, d=f /1.2 lenses
- Common FoV 20°×20°
- 10 s exposures, ~11^m range 13^m for 20 coadded frames
- Fully autonomous running including diagnostics and recovery from known problems
- Human supervision via internet

Final system

- two sets of 12 CCD cameras (same optics as prototype)
 following SWIFT FoV ⇒ every SWIFT alert should be in our FoV
 extension to 16 cameras possible in the future
- upgraded cameras with ethernet interface

fast data transfer, CCD binning possible software CCD voltage tuning for noise reduction

shutter designed for 10⁷ cycles

 satellite and other near-Earth objects rejection by paralax

Final system

new paralactic mount (Space Research Center PAS)

 two observation modes: side-byside (WIDE) or common-target (DEEP)

Data processing

On-line analysis

not covered in this talk

Fast algorithms optimised for transient search - real time analysis frame by frame:

- dark frame subtraction
- fast photometry including "Laplace filter"
- comparison with reference image (based on series of previous images)
- multilevel selection system to reject backgrounds (fluctuations, hot pixels, cosmic ray hits, satellites) start with simple cuts, more time for deeper analysis (similar to particle physics pipelines)
- coincidence between cameras crucial

Data processing

Off-line analysis

Algorithms optimised for data reduction:

- adding 20 subsequent frames (equiv. 200 s exposure)
- dark frame subtraction, flat correction
- multiple aperture photometry (ASAS)
- astrometry, reference star selection
- normalization to V magnitudes from TYCHO catalog
- cataloging of lightcurves to the PostgreSQL database
- flagging new objects added to the catalog

Database

 Open access to data May 2006 - Apr 2009 (16.7 million of objects, 2.16 billion measurements)

http://grb.fuw.edu.pl/pi/databases

Database

Unfiltered measurements

measured brightness dispersion vs magnitudo (example)

Few variable stars, but large dispersion mainly due to bad measurements

Data analysis

- Dedicated filters developed to remove bad measurements or frames
 - hot pixels
 - measurements near CCD edge (require at lease 100 pixel from edge)
 - planet or planetoid passage
 - columns around bright stars (in opened shutter mode)
 - frames with too few matched stars
 - frames with very high background level
 - frames with large astrometric error

Data analysis

- Photometry accuracy significantly improves after removing bad quality data
 - For stars $7^m 10^m < \sigma_m > \approx 0.015$ achived

- Spectral sensitivity of Pi of the Sky
 - CCD sensitivity ⊗ UV-IR filter, relatively wide
 - average $\lambda \approx 585$ nm (closest to V filter)

 It turned out that detector response is correlated with the star spectral type (B-V or J-K)

Reference stars measurements are corrected for spectral type:

$$M_{corr} = M - 0.2725 + 0.5258*(J - K)$$

stars with large ΔM rejected

corrections more precise and stable

- Normalization method
 - quadratic corrections fitted to reference stars
 - weights depending on distance and brightness

Comparison of uncorrected and corrected lightcurves for BGInd variable

Possible improvements

Correction taking into account CCD structure

magnitudo shift vs star position w.r.t. pixel edge

can depend on position and spectral type – more studies needed...

Possible improvements

Photometry based on detailed PSF model

Laboratory PSF measurements (distance from CCD center):

Possible improvements

- Different approaches possible for PSF modelling
 - numerical wavefront integration
 - parametrization with Zernike polynomials

Position, focus and color dependence – very difficult to parametrize all, still not successful..

Conclusions

 Pi of the Sky prototype working 2006-2009 delivered large amount of photometric data:

http://grb.fuw.edu.pl/pi/databases

- With improved understanding of the detector and new filtering algorithms data quality can be significantly improved
- Further improvements seem feasible, including pixel structure and spectral type corrections we aim at $\sigma_m \approx 0.01$ for stars up to 10^m

Backup slides

GRB080319B

- Main success and proof of principle
 - recognized by on-line algorithm

Data analysis

Examples of removed measurements

Tail of bright star (opened shutter mode)

Hotpixel

PSF measurements

 Laboratory "beam tests" to measure PSF with sub-pixel resolution

"artificial star"
(LED diod with 0.1-0.4 mm apertur)
mounted on a movable table,
observed from 22 m

PSF measurements

 Laboratory "beam tests" to measure PSF with sub-pixel resolution

"artificial star"
(LED diod with 0.1-0.4 mm apertur)
mounted on a movable table,
observed from 22 m

