Production of Inert Scalars at the LHC and the high energy e^+e^- colliders

Aleksander Filip Żarnecki

Faculty of Physics, University of Warsaw

December 18, 2015

A.F.Żarnecki (University of Warsaw)

Inert Scalars

December 18, 2015 1 / 14

Acknowledgements

This presentation is based on the results presented at the conference "Scalars 2015" (December 03-07,2015) by

• Sabine Kraml(LPSC Grenoble)

Recasting LHC searches: the case of the Inert Doublet Model and other examples

based on work with/of D. Barducci, G. Belanger, S. Bein, G. Chalons, E. Conte, C.

Delauney, B. Dumont, B. Fuks, B. Herrmann, A. Goudelis, S. Kulkarni, S. Pandey, S.

Sharma, D. Sengupta, C. Wymant

- Tania Robens (IKTP, TU Dresden) The Inert Doublet Model in the light of LHC and astrophysical data based on work with A. Ilnicka and M. Krawczyk arXiv:1505.04734, arXiv:1508.01671, arXiv:1510.04159
- Saereh Najjari (University of Warsaw) Production of Inert Scalars at the e⁺e⁻ Linear Colliders based on work with Majid Hashemi, Maria Krawczyk and AFŻ arXiv:1512.01175

Inert Doublet Model (IDM)

3 IDM @ LHC

- 4 IDM @ high energy e^+e^- colliders
- 5 IDM mass reconstruction

Introduction

The LHC endeavor

- The LHC was built as a **discovery machine** to explore new physics at the **TeV energy scale**.
- The discovery of a Standard Model (SM)-like Higgs boson was a tremendous first success for the LHC physics program.
- However, while the Higgs discovery completes our picture of the SM, it still leaves many fundamental questions open (naturalness, hierarchy problem, ...)
- Run 2 of the LHC just started; the search for new phenomena beyond the SM (BSM) is one of its top priorities.
- The BSM theory might also provide the **dark matter** (DM) and generally enhance our understanding of the early Universe.

115 120 125 130 135 140 145 150 m,[GeV]

les):

Beyond the Fermi Theory:

$$W_{L} \longrightarrow W_{L} + \ldots \sim g_{W}^{2} E^{2} / m_{W}^{2} < 16\pi^{2} \longrightarrow m_{H} < 4\pi v$$
 ~3 TeV
 $W_{L} \longrightarrow W_{L}$

The Higgs discovery completes the SM — and leaves us without any no-loose theorem to exploit for future discoveries.

New physics searches

- ATLAS and CMS perform searches for new physics in many different channels.
- In the experimental publications, the results are typically interpreted within popular models as well as within topology-based "Simplified Model Spectra" (SMS).
- SUSY, VLQ, extra gauge bosons, DM models, other exotics, extra Higgses, etc.
- However, there **exists a plethora of models** and scenarios

A plethora of searches

Examples of SUSY and exotics searches from ATLAS and CMS

Displaced vertex [RPV, GMSB, split-SUSY] NEW	Search for third-generation scalar leptoquarks in the top+tau channel NEW				
Heavy resonance to eµ, et, µt [RPV-LFV, Z'-LFV] NEW					
2 leptons (on/off-Z) + jets + Etmiss [incl. squarks & gluinos, GGM] NEW	Search for high mass resonances decaying to Z and Higgs bosons NEW				
Multijets [RPV] NEW	Search for physics beyond the standard model in the Dilepton Mass				
Monojet + Etmiss (gravitino-squark, gravitino-gluino) NEW					
Chargino neutralino decaying via Higgs NEW	Reinterpretation of HSCP Analysis in the pMSSM and other scenarios NEW				
1/2 leptons + jets + Etmiss [incl. squarks & gluinos, mUED] NEW	Search for Stopped Long-Lived Particles NEW				
Search for scalar charm NEW	Secret for Honey Majorona Moutrings with some sign dimuons MEW				
Top spin correlations (stealth stop)	Search for Heavy Majorana Neutrinos with same sign dimuons NEW				
Long-lived particles (sleptons, charginos, R-hadrons)	Search for Resonances using the Dijet Mass Spectrum NEW				
Mono-photon + Etmiss [Degenerate squark/neutralino]	Search for pair-produced resonances decaying to jet pairs NEW				
Non-pointing, delayed photons [LLP, GMSB]					
0 leptons + mono-jet/c-jets + Etmiss [Stop in charm+LSP]	Search for displaced dilepton pairs NEW				
1 lepton + 4(1 b-)jets + Etmiss [Medium / heavy stop]	Search for contact interactions and extra dimensions in dijet angular				
1-2 taus + 0-1 leptons + jets + Etmiss [GMSB]	distributions NEW				
0-1 leptons + >=3 b-jets + Etmiss [3rd gen. squarks]	Search for new physics with monophotons NEW				
2 taus + Etmiss [EW production]	Search for new physics with monoiets NEW				
Stop constraints from precise ttbar cross-section [Light stop]					
0 lepton + 6 (2 b-)jets + Etmiss [Heavy stop]	Search for Dark Matter, extra-dimensions, W' and contact interactions in lepton+MET final states NEW				
0 leptons + 2-6 jets + Etmiss [Incl. squarks & gluinos]	Coords for long lived equited particles describe to dilate				
4 leptons + Etmiss [EW production, RPV]	Search for long-lived neutral particles decaying to dijets				
2 same-sign / 3 -leptons + 0-3 b-jets + Etmiss [Incl. squarks & gluinos]	Search for disappearing tracks				

A plethora of searches Need for interpretation studies

- ATLAS and CMS perform **searches** for new physics **in many different channels**.
- They also provide interpretations of their results within constrained models, like the CMSSM, or within topology-based
 "Simplified Model Spectra" (SMSs).
- However, there exists a plethora of different BSM models and scenarios
- Need to interpret LHC results in the contexts of all kinds of models of new physics
 - important for deriving the current limits on them, and for finding existing loopholes;
 - crucial once there is a discovery, if we are to unravel the correct theory and determine its parameters.

Inert Doublet Model

The Inert Doublet Model

 In the IDM, the SM is extended by the addition of a second scalar, Φ, transforming as a doublet under SU(2)_L. This Φ is odd under a new discrete Z₂ symmetry.

$$H = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}} \left(v + h + iG^0 \right) \end{pmatrix}, \ \Phi = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}} \left(H^0 + iA^0 \right) \end{pmatrix}$$

Scalar potential

$$V_0 = \mu_1^2 |H|^2 + \mu_2^2 |\Phi|^2 + \lambda_1 |H|^4 + \lambda_2 |\Phi|^4 + \lambda_3 |H|^2 |\Phi|^2 + \lambda_4 |H^{\dagger}\Phi|^2 + \frac{\lambda_5}{2} \Big[(H^{\dagger}\Phi)^2 + \text{h.c.} \Big].$$

The Z_2 symmetry forbids mixing among the components of H and Φ and renders the lightest Z_2 -odd particle stable. \rightarrow H⁰ or A⁰ can play the role of a **DM candidate**.

NB: all fermions couple to H, i.e. **2HDM Type-I** Yukawa couplings

$$m_h^2 = \mu_1^2 + 3\lambda_1 v^2$$
$$m_{H^0}^2 = \mu_2^2 + \lambda_L v^2$$
$$m_{A^0}^2 = \mu_2^2 + \lambda_S v^2$$
$$m_{H^\pm}^2 = \mu_2^2 + \frac{1}{2}\lambda_3 v^2$$

$$\lambda_{L,S} = \frac{1}{2} \left(\lambda_3 + \lambda_4 \pm \lambda_5 \right)$$

- \Rightarrow then, go through standard procedure...
- \Rightarrow minimize potential
- \Rightarrow determine number of free parameters

Number of free parameters here: 7

• e.g.

 $\mathbf{v}, \, \mathbf{M_h}, \, \mathbf{M_H}, \, \mathbf{M_A}, \, \mathbf{M_{H^{\pm}}}, \lambda_2, \, \lambda_{345} \left[= \, \lambda_3 + \lambda_4 + \lambda_5 \right]$

• v, M_h fixed \Rightarrow left with **5** free parameters

Tania Robens

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 Inert Doublet model
 Constraints
 Predictions
 Summary
 Appendix

 Very brief:
 parameters determining couplings (production and decay)
 Appendix

dominant production modes: through Z; Z, γ , h for AH; H⁺H⁻ important couplings:

•
$$Z H A$$
: $\sim \frac{e}{s_W c_W}$
• $Z H^+ H^-$: $\sim e \coth (2\theta_W)$
• $\gamma H^+ H^-$: $\sim e$
• $h H^+ H^-$: $\lambda_3 v$
• $H^+ W^+ H$: $\sim \frac{e}{s_W}$

• $H^+ W^+ A$: $\sim \frac{e}{s_w}$

!! mainly determined by electroweak SM parameters !!

Tania Robens

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Benchmark planes

Inert Doublet model	Constraints	Predictions	Summary	Appendix
Aside: typical B	Rs			

- decay $A \rightarrow HZ$ always 100 %
- decay $H^{\pm} \rightarrow H W^{\pm}$

second channel $H^{\pm}
ightarrow A W^{\pm}$

 \implies collider signature: SM particles and MET \Longleftarrow

→

A B >
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- \Rightarrow consider all current constraints on the model \Leftarrow
- Theory constraints: vacuum stability, positivity, constraints to be in inert vacuum
 ⇒ limits on (relations of) couplings, e.g.

$$\lambda_1 > 0, \, \lambda_2 > 0, \, \lambda_3 + \sqrt{\lambda_1 \lambda_2} > 0, \, \lambda_{345} + \sqrt{\lambda_1 \lambda_2} > 0$$

perturbative unitarity, perturbativity of couplings
 choosing M_H as dark matter:

 $M_H \leq M_A, M_{H^{\pm}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Scalars '15

Tania Robens

$M_h = 125.1 \,\mathrm{GeV}, \, v = 246 \,\mathrm{GeV}$

- total width of M_h
- total width of W, Z
- collider constraints from signal strength/ direct searches
- electroweak precision through S, T, U
- unstable H^{\pm}
- reinterpreted/ recastet LEP/ LHC SUSY searches (Lundstrom ea 2009; Belanger ea, 2015)
- dark matter relic density (upper bound)
- dark matter direct search limits (LUX)

⇒ tools used: 2HDMC, HiggsBounds, HiggsSignals, MicrOmegas

Tania Robens

Other constraints less obvious (interplay); result \Rightarrow mass degeneracies

Tania Robens

IDM

Scalars '15

DM annihilation channels

(taking H⁰ as the DM candidate)

DM annihilation channels

(taking H⁰ as the DM candidate)

Constraints on the model

- **Relic density** (vanilla picture of thermal DM)
- **Direct DM** searches eliminate $m_{H0} < 115$ GeV DM region apart from $m_{H0} \sim m_h/2$

green: points valid at the input scale $\Lambda = MZ$, red: points which remain valid up to $\Lambda = 10$ TeV, black: points valid up to the GUT scale of 10^{16} GeV

[Goudelis, Herrmann, Stal, 1303.3010]

Most recent update: A. Ilnicka, M. Krawczyk, T. Robens, 1508.01671

IDM @ LHC

LHC signatures (assuming m_{H0} < m_{A0})

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + ET^{miss} (same flavor or different flavor)

E. Dolle et al., arXiv:0909.0394

LHC signatures (assuming m_{H0} < m_{A0})

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + ET^{miss} (same flavor or different flavor)

- Both ATLAS + CMS have searched for opposite-sign dileptons + ET^{miss} at Run 1.
 While no interpretation was given for the IDM, note that
 - the SUSY equivalent of process (a) is $q\bar{q} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0$
 - process (b) resembles the signature of chargino-pair production $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$
 - **process** (c) is Zh production with $h \rightarrow inv$.; (also (a) can look like Zh, $h \rightarrow inv$.)
 - processes (c) and (d) are negligible, contribution from (b) is small.

LHC signatures (assuming $m_{H^0} < m_{A^0}$)

- At the LHC, inert scalars can be pair-produced via virtual Z or W exchange (H⁺H⁻ also via γ)
- The unstable A⁰ or H[±] then decay into the H⁰ plus a Z or W
- Most promising signatures: SF or DF dileptons I⁺I⁻ + E_T^{miss} (same flavor or different flavor)

E. Dolle et al., arXiv:0909.0394

Both ATLAS + CMS have searched for opposite-sign dileptons + ET^{miss} at Run 1.
 While no interpretation was given for the IDM, note that

- the SUSY equivalent of process (a) is $q\bar{q} \to \tilde{\chi}_2^0 \tilde{\chi}_1^0$ with $\tilde{\chi}_2^0 \to Z^{(*)} \tilde{\chi}_1^0$
- process (b) resembles the signature of chargino-pair production $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$
- **process** (c) is Zh production with $h \rightarrow inv$.; (also (a) can look like Zh, $h \rightarrow inv$.)
- processes (c) and (d) are negligible, contribution from (b) is small.

Recasting $I^+I^- + E_T^{miss}$ analyses for the IDM

 Implemented 2 ATLAS dilepton analyses in the MA5 PAD (PAD = Public Analysis Database)

- SUSY-2013-11: Chargino, neutralino and slepton search [arXiv:1403.5294]

Various signal regions optimized for chargino, neutralino, slepton signals or mass regions; all leptonic signal regions regions require $|m_{\parallel} - m_Z| > 10 \text{ GeV}$, *i.e. on-shell Z bosons are vetoed*; mostly relevant for $m_A < m_H + m_Z$

- HIGG-2013-03: $ZH \rightarrow I^+I^- + inv. search$ [arXiv:1402.3244]

Requires $|m_{II} - m_Z| < 15 \text{ GeV}$; can be matched onto processes (c) and (d), and for $m_{A0} - m_{H0} > m_Z$ also onto (a); relevant for $m_A > m_H + m_Z$

ATLAS-HIGG-2013-03

[arXiv:1402.3244]

- ATLAS search for invisible decays of the Higgs boson in the 2 lepton + MET final state
- only one SR, where it is required:
 - $-|m_{\ell\ell} m_{Z^0}| < 15 \text{ GeV}$ $-E_T^{\text{miss}} > 90 \text{ GeV}$ $-\Delta\phi(p_T^{\ell\ell}, E_T^{\text{miss}}) > 2.6$ $-\Delta\phi(\ell, \ell) < 1.7$ $-|E_T^{\text{miss}} - p_T^{\ell\ell}|/p_T^{\ell\ell} < 0.2$
 - no jet

- $\Delta \phi(E_T^{
m miss},p_T^{
m miss}) < 0.2$ (avoid fake MET from misreconstructed energy in the calorimeter)

	cut	ATLAS result	MA5 result	10 ² E	
	Initial number of events		838.9	[$- ZH \rightarrow \ell\ell + \text{inv.}$
	2 OS leptons		256.2	a [
	$ m_{\ell\ell} - m_{Z^0} < 15 \text{ GeV}$	243	244.1		
validation results	$E_T^{\text{miss}} > 90 \text{ GeV}$	103	105.1		,
include:	$\Delta \phi(p_T^{\ell\ell}, E_T^{\text{miss}}) > 2.6$		91.7	ven	
	$\Delta \phi(\ell,\ell) < 1.7$		82.9	Ne l	
	$\Delta \phi(E_T^{\rm miss}, p_T^{\rm miss}) < 0.2$		76.5	10 ⁰ F	•
	$ E_T^{\text{miss}} - p_T^{\ell\ell} / p_T^{\ell\ell} < 0.2$		63.2		
	jet veto	$44 \pm 1 \pm 3$	54.8	0	0.5 1 1.5 2
					$ E_T^{ m mass}-p_T^{ m cc} /p_T^{ m cc}$

Exploring the dark sector

Béranger Dumont

March 17, 2015

Recasting $I^+I^- + E_T^{miss}$ analyses for the IDM

arXiv:1503.07367

- Implemented 2 ATLAS dilepton analyses in the MA5 PAD:
 - SUSY-2013-11: Chargino, neutralino and slepton search [arXiv:1403.5294]

Various signal regions optimized for chargino, neutralino or slepton signals/mass regions; all leptonic signal regions regions require $|m_{II} - m_Z| > 10$ GeV, i.e. on-shell Z bosons are vetoed

- HIGG-2013-03: $ZH \rightarrow I^+I^- + inv. search$ [arXiv:1402.3244]

Requires $|\mathbf{m}_{\parallel} - \mathbf{m}_{Z}| < 15 \text{ GeV}$; can be matched onto (c) and (d), and for $m_{A0} - m_{H0} > m_{Z}$ also onto (a)

• The MadAnalysis 5 codes and detailed validation notes are **publicly available**

10.7484/INSPIREHEP.DATA.HLMR.T56W.2 10.7484/INSPIREHEP.DATA.RT3V.9PJK

- Simulated signal in (m_{H0}, m_{A0}) plane for fixed m_H± and $\lambda_L = 0$ MadGraph5 + Feynrules + CalcHEP + Delphes3 + MadAnalysis5
- Background numbers taken from the experimental papers to compute CLs

Comments

- The Run 1 ATLAS searches exclude, at 95% CL, $m_{H0} < 35$ GeV for $m_{A0} \approx 100$ GeV.
- The limit becomes stronger for heavier A^0 , up to $m_{H^0} \approx 45-55$ GeV for $m_{A^0} \approx 140-145$ GeV (depending on m_{H^\pm})
- The m_{A0} dependence comes from the fact that the leptons from A⁰ → ZH⁰, Z→I⁺I⁻ are harder for heavier A⁰.
 (and softer for lighter A⁰/ smaller mass differences)
- m_{H±} dependence: Xsection is larger for lighter H[±], but decay leptons are very soft and don't pass the signal selection cuts. Also, A⁰ → WH[±] competes with A⁰ → ZH⁰, when kinematically allowed, reducing the signal.

Outlook for Run 2

- Naive rescaling of signal and BG numbers: at 13 TeV and L=100 fb⁻¹ the 95% CL reach should go up to $\mu \approx 1.2$ (1.6) above (below) the line of m_A = m_H + m_Z
 - \rightarrow starts testing the funnel region m_H~m_h/2
- Exploration of benchmark points in 1508:0167 seems difficult → high luminosity option?

Take point I with $m_H = 57.5$ GeV and $m_A = 113$ GeV: $\sigma(pp \rightarrow HA) = 371$ fb but incl. BR(Z \rightarrow II)~7% and a cut acceptance of ~1% this reduces to ~0.25 fb visible XS

• The experimental analyses we recasted are not optimized for the IDM signal

Could improve sensitivity by exploiting angular separation of signal and backgrounds (cf. Dolle et al., 0909.0394)

Perhaps exploit m_{II} inv. mass distribution?

→ Dedicated analysis at Run 2 would be highly interesting

Group

all benchmarks: $A \rightarrow Z H = 100 \%$

• Benchmark I: low scalar mass

 $M_H = 57.5 \,\mathrm{GeV}, \, M_A = 113.0 \,\mathrm{GeV}, M_{H^\pm} = 123 \,\mathrm{GeV}$

 $HA: 0.371(4) \text{pb}, \ H^+ \ H^-: 0.097(1) \text{pb}$

Benchmark II: low scalar mass

 $M_H = 85.5 \,\mathrm{GeV}, \ M_A = 111.0 \,\mathrm{GeV}, \ M_{H^{\pm}} = 140, \ \mathrm{GeV}$

HA : 0.226(2)pb, *H*⁺*H*⁻ : 0.0605(9)pb

• Benchmark III: intermediate scalar mass

 $M_{H} = 128.0 \,\text{GeV}, \, M_{A} = 134.0 \,\text{GeV}, \, M_{H^{\pm}} = 176.0, \, \text{GeV}$

HA: 0.0765(7)pb, $H^+H^-: 0.0259(3)$ pb;

Tania Robens

■▶ ▲ ■ ▶ ■ のへで

• Benchmark IV: high scalar mass, mass degeneracy

 $M_H = 363.0 \,\mathrm{GeV}, M_A = 374.0 \,\mathrm{GeV}, M_{H^\pm} = 374.0 \,\mathrm{GeV}$

H, A: 0.00122(1)pb, $H^+H^-: 0.00124(1)$ pb

• Benchmark V: high scalar mass, no mass degeneracy

 $M_H = 311.0 \,\mathrm{GeV}, M_A = 415.0 \,\mathrm{GeV}, M_{H^{\pm}} = 447.0 \,\mathrm{GeV}$

H, *A* : 0.00129(1)pb, *H*⁺*H*⁻ : 0.000553(7)pb

Tania Robens

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Parameters tested at LHC: masses

- LHC@13 TeV does not depend on λ_2 , only marginally on λ_{345}
- all relevant couplings follow from ew parameters (+ derivative couplings) ⇒ in the end a kinematic test
- $\bullet\,$ only in expectional cases λ_{345} important; did not find such points
- ⇒ high complementarity between astroparticle physics and collider searches

(holds for $M_H \geq \frac{M_h}{2}$)

Tania Robens

ヨト ▲ ヨト ヨ つくで

Scalars '15

IDM @ high energy e^+e^- colliders

Benchmark Points

BP	m _H m _A		$m_{H^{\pm}}$
BP1	57.5	113.0	123
BP2	85.5	111.0	140
BP3	128.0	134.0	176.0

Benchmark Points: Ilnicka, Krawczyk and Robens 2015 We analyse the following decay processes:

•
$$e^+e^- \rightarrow H^+H^- \rightarrow W^+W^-HH \rightarrow \mu\nu jjHH, jjjjHH$$

•
$$e^+e^- \rightarrow HA \rightarrow HHZ \rightarrow HH\mu\mu, HHjj$$

Saereh Najjari

6 / 18

 $e^+e^- \rightarrow H^+H^-$

Signal and background cross sections

Dracass	Signal			Background				
FIOCESS	BP1	BP2	BP3	WW	ZZ	Z+jets	tī	
σ [fb] @ 500 GeV	164.4	141.8	89.2	7807	583	16790	595	
σ [fb] @ 1 TeV	56.2	54.6	50.6	3180	233	4304	212	

IDM at LC, Scalars 2015, December 6, 2015

Saereh Najjari

Correlation between the sum of energies of two jets and their invariant mass

Saereh Najjari

Consider pair production of charged scalars

 $e^+e^- \to H^+H^-$

- the energies of the charged scalars are given by the beam energy
- their Lorentz boost factor is uniquely defined by their mass

$$\gamma = E_{beam}/M_{H^{\pm}}$$

Charged scalars decay to dark matter scalar and virtual W^{\pm}

$$H^{\pm} \rightarrow H W^{\pm}$$

For all considered benchmark scenarios, the scalar mass difference

$$m_{H^{\pm}} - m_H \ll m_W$$

 \Rightarrow produced W^{\pm} are always virtual (W^{\star})

Decay kinematics

Truncated Breit-Wigner distribution for $m_{W^{\star}}$

Most likely is the W^* production with the maximum virtuality

$$m_{W^{\star}} \approx m_{H^{\pm}} - m_{H}$$

 \Rightarrow expect a peak in the two jet invariant mass distribution

Decay kinematics

The Lorentz boost of W^* is unknown, but if it is produced with the highest possible virtuality, it is almost at rest in the H^{\pm} frame \Rightarrow we can use H^{\pm} Lorentz boost factor to transform jet energies

In the W^*/H^{\pm} rest frame:

$$E_{j_1}^{\star} = E_{j_2}^{\star} = rac{1}{2} m_{W^{\star}} pprox rac{1}{2} (m_{H^{\pm}} - m_H)$$

In the laboratory frame:

$$E_{j_{1,2}} = \gamma \left(E_j^{\star} \pm \beta p_j^{\star} \cos \theta^{\star} \right)$$

Single jet energy strongly depends on the decay angle θ^{\star} .

But for the sum of two energies we have

$$E_{j_1} + E_{j_2} = 2 \gamma E_j^{\star} = \gamma (m_{H^{\pm}} - m_H) = E_{beam} \left(1 - \frac{m_H}{m_{H^{\pm}}}\right) = \text{const}$$

Correlation between the sum of energies of two jets and their invariant mass

IDM at LC, Scalars 2015, December 6, 2015

8 / 18

Saereh Najjari

Selection cuts for semi-leptonic final state

H^+H^- analysis, semi-leptonic final state selection							
Selection cut	$\sqrt{s} = 0.5 \text{ TeV}$	$\sqrt{s} = 1$ TeV					
One lepton	$E_T > 10 \text{ GeV}$	$E_T > 10 \text{ GeV}$					
Two jets	$E_T > 10 \text{ GeV}$	$E_T > 10 \text{ GeV}$					
$E_T^{\rm miss}$	$E_T^{\rm miss}$ > 20 GeV	E_T^{miss} > 20 GeV					
$E(j_1) + E(j_2)$	$E(j_1) + E(j_2) < 150 \text{ GeV}$	$E(j_1) + E(j_2) < 350 \text{ GeV}$					

Saereh Najjari

IDM at LC, Scalars 2015, December 6, 2015

Sum of the energies and invariant mass of two jets in semileptonic final state at $\sqrt{s} = 0.5 \text{ TeV}$

Sum of the energies and invariant mass of two jets in semileptonic final state at $\sqrt{s} = 1~{\rm TeV}$

Signal significance

If inert charged scalars with masses $\sim M_Z$ do exist, we should clearly see them at ILC/CLIC:

- Production cross section is model-independent depends only on the mass, charge and spin of the produced particle
 we can test, if it is a scalar...
- Well defined kinematics \Rightarrow high signal selection efficiency

•
$$20 - 64\%$$
 for $\sqrt{s} = 0.5$ TeV

• 59 – 86% for
$$\sqrt{s}$$
=1 TeV

and good background supression

• Signal to background ratio S/B after mass window cut

•
$$0.35 - 4$$
 for $\sqrt{s} = 0.5$ TeV

• 2.5 – 11 for
$$\sqrt{s}$$
=1 TeV

- Final statistical significance $S/\sqrt{S+B}$
 - 11 66 for $\sqrt{s} = 0.5$ TeV
 - 33 87 for \sqrt{s} =1 TeV

$$e^+e^- \rightarrow AH$$

Signal and background cross sections

	\sqrt{s}	= 0.5	TeV	$\sqrt{s} = 1$ TeV			
Process	e^+	$e^- \rightarrow b$	AH	$e^+e^- \rightarrow AH$			
Benchmark point	BP1	BP2	BP3	BP1	BP2	BP3	
Cross section [fb]	90	85.8	68.4	25	24.8	23.6	

Saereh Najjari

IDM at LC, Scalars 2015, December 6, 2015

Sum of the energies (up) and invariant mass (down) of two lepton in

Scalar mass reconstruction

For the charged scalar production $e^+e^- \to H^+H^-$

- Semi-leptonic channel $e^+e^-
 ightarrow l
 u jjHH$
 - two jet invariant mass: $m_{jj}=m_{W^{\star}}pprox m_{H^{\pm}}-m_{H}$
 - sum of two jet energies: $E_{jj} = E_{beam} (1 R)$, where $R = m_H/m_{H^{\pm}}$
- Fully hadronic channel $e^+e^- \rightarrow jjjjHH$ As both W^* have the same Lorentz boost, jet with the highest energy (lab) comes from the same W^* as the jet with the lowest energy

 \Rightarrow we can reconstruct both W^{\star} easily

- two jet invariant masses: $m_{14}=m_{23}=m_{W^\star}pprox m_{H^\pm}-m_H$
- sum of four jet energies: $E_{4j} = 2 E_{beam} (1 R)$

For the neutral scalar production $e^+e^-
ightarrow HA$

• For leptonic channel $e^+e^- \rightarrow IIHH$ two lepton invariant mass: $m_{II} = m_{Z^*} \approx m_A - m_H$

• For hadronic channel
$$e^+e^- \rightarrow jjHH$$

two jet invariant mass: $m_{jj} = m_{Z^*} \approx m_A - m_H$

Expected statistical precision of scalar mass determination with 500 fb⁻¹

Scalar	\sqrt{s} [TeV]	BP1	BP2	BP3
	theo.	123	140	176
$m_{H^{\pm}}$	0.5	$117.1{\pm}3.6$	$136.8{\pm}3.5$	$167.4{\pm}3.5$
	1	$112.7{\pm}2.4$	$131.4{\pm}1.9$	$172.2{\pm}2.1$
	theo.	57.5	85.5	128
m_H	0.5	$58.5{\pm}1.8$	88.9±2.3	127.2 ± 2.7
	1	$53.0{\pm}1.1$	$81.5{\pm}1.2$	$129.1{\pm}1.6$
	theo.	113	111	134
m _A	0.5	$113.9{\pm}1.8$	$114.3{\pm}2.3$	$133.1{\pm}2.7$
	1	$104.6{\pm}1.1$	$105.0{\pm}1.2$	$134.8{\pm}1.6$

The systematic shifts observed between the assumed (theo.) scalar masses and the fit results are due to the simplified approach used. Can be corrected for based on the simulation results.

Conclusions

- Inert Doublet Model is one of the simplest extensions of the Standard Model providing a candidate for dark matter.
 - Second scalar doublet is not involved in mass generation and does not couple to fermions
 - IDM with inert scalar masses of the order of *M_Z* still in agreement with all existing data

- Inert Doublet Model is one of the simplest extensions of the Standard Model providing a candidate for dark matter.
 - Second scalar doublet is not involved in mass generation and does not couple to fermions
 - IDM with inert scalar masses of the order of M_Z still in agreement with all existing data
- LHC signatures similar to some SUSY scenarios, but cross sections small
 - Run 1 limits on m_H extend to \sim 50 GeV only
 - Dedicated benchmark points prepared for LHC Run 2

- Inert Doublet Model is one of the simplest extensions of the Standard Model providing a candidate for dark matter.
 - Second scalar doublet is not involved in mass generation and does not couple to fermions
 - IDM with inert scalar masses of the order of M_Z still in agreement with all existing data
- LHC signatures similar to some SUSY scenarios, but cross sections small
 - Run 1 limits on m_H extend to \sim 50 GeV only
 - Dedicated benchmark points prepared for LHC Run 2
- IDM should be clearly visible at high energy e^+e^- collider for low and intermediate mass scenarios
 - Well constrained kinematics allows for efficient selection
 - Scalar masses can be reconstructed with 1 4 % precision

Number of events in signal and background processes after all selection

cuts at integrated luminosity of 500 fb^{-1} .

H^+H^- , semi-leptonic final state at ${\cal L}=500~{\it fb}^{-1}$									
	$\sqrt{s} = 0.5 \text{ TeV}$					$\sqrt{5}$	5 =1 T	eV	
	S	В	S/B	$S/\sqrt{S+B}$	S	В	S/B	$S/\sqrt{S+B}$	
BP 1	4887	3307	1.5	54	8709	2736	3.2	81	
BP 2	5402	1342	4	66	8166	720	11	87	
BP 3	478	1380	0.35	11	1534	602	2.5	33	

Saereh Najjari

IDM at LC, Scalars 2015, December 6, 2015

11 / 18

Selection cuts and cut efficiencies for fully leptonic final state

HA analysis, leptonic final state selection							
Selection cut	$\sqrt{s} = 0.5 \text{ TeV}$	$\sqrt{s} = 1$ TeV					
2 leptons	$E_T > 1 \text{ GeV}$	$E_T > 5 \text{ GeV}$					
E_T^{miss}	$10 < E_T^{\text{miss}} < 120 \text{ GeV}$	$10 < E_T^{\text{miss}} < 250 \text{ GeV}$					
$m_{\ell 1,\ell 2}$	$ m_{\ell 1,\ell 2} - m_Z > 20 \text{ GeV}$	$ m_{\ell 1,\ell 2} - m_Z > 20 \text{ GeV}$					

HA analysis, leptonic final state selection								
Cut eff. BP1 BP2 BP3 WW ZZ Z					Z	TT		
Total eff.@ 0.5 TeV	0.99	1	0.22	0.67	0	1.5e-05	0.26	
Total eff.@ 1 TeV	0.98	0.98	0.65	0.45	2e-06	4.2e-05	0.42	

Saereh Najjari

IDM at LC, Scalars 2015, December 6, 2015

Number of events in signal and background processes after all selection

cuts at integrated luminosity of 500 fb^{-1}

HA, leptonic final state at $\mathcal{L}=500~\textit{fb}^{-1}$									
	$\sqrt{s} = 0.5 \text{ TeV}$					$\sqrt{s} = 1$ TeV			
	S	В	S/B	$S/\sqrt{S+B}$	S	В	S/B	$S/\sqrt{S+B}$	
BP 1	1214	105	11.6	33	1220	55	22	34	
BP 2	1223	71	17.2	34	1211	31	38.7	34	
BP 3	225	34	6.6	14	666	13	50	26	

Saereh Najjari

IDM at LC, Scalars 2015, December 6, 2015

15 / 18