Beam telescope geometry study (II)

A.F.Żarnecki Warsaw University

<u>Outline</u>

- Introduction summary of previous results
- Telescope geometry

realistic assumptions, possible configurations

Results

configuration choice, expected position resolution

• Conclusions

Introduction

Motivation

The main aims of this study

- understand the position measurement in the telescope
- optimize the performance by suggesting the best plane setup

Analytical method

Describes the performance of the telescope including multiple scattering (!!!) Simplifying assumptions:

- small scattering angles (Gaussian approximation)
- Gaussian position measurement errors
- perfect alignment
- no additional material (windows, etc.) (could be taken into account)

Analytical approach: track fitting by solving matrix equation

⇒ error on the position reconstructed at DUT given by telescope geometry only

Geometry can be specified by giving:

- N number of detector planes (including DUT)
- x_i position of each plane $(i = 1 \dots N)$
- σ_i position resolution in each plane $(i \neq i_{DUT})$
- $\Delta \theta_i$ average scattering angle in each plane

For given telescope parameters $(N, \sigma_i, \Delta \theta_i)$ we can look for configuration (plane ordering, values of x_i) resulting in best determination of particle position at DUT

Introduction

Previous results

Error on particle position at DUT, σ_{DUT} , calculated for different telescope set-ups, as a function of d_{min} - minimum distance between two detector planes.

6 GeV e^- beam, 120 μm sensors with 2 μm resolution, DUT thickness of 500 μm

It is essential to place sensor planes as close to DUT as possible.

6 sensor planes always give better position resolution than 4 planes.

For details see: http://hep.fuw.edu.pl/u/zarnecki/talks/afz_jra1_apr06.pdf

Realistic assumptions thanks to W.Dulinski

The minimum distance between DUT and **one** of the telescope planes, d_{min} , is 5 mm (easy, realistic) or even 2 mm (hard, optimistic).

However, other distances can not be smaller than 15 or 20 mm:

Realistic assumptions thanks to W.Dulinski

The minimum distance between DUT and **one** of the telescope planes, d_{min} , is 5 mm (easy, realistic) or even 2 mm (hard, optimistic).

However, other distances can not be smaller than 15 or 20 mm:

In addition to standard sensor planes with 2 μm resolution we can consider adding one high resolution plane ($\sigma_{HR} \sim 1 \mu m$) in front of DUT

Realistic assumptions thanks to W.Dulinski

The minimum distance between DUT and **one** of the telescope planes, d_{min} , is 5 mm (easy, realistic) or even 2 mm (hard, optimistic).

However, other distances can not be smaller than 15 or 20 mm:

In addition to standard sensor planes with 2 μm resolution we can consider adding one or two high resolution planes ($\sigma_{HR}\sim 1\mu m$)

Configuration description

Labeling scheme introduced to describe considered telescope configurations:

Configuration description

Labeling scheme introduced to describe considered telescope configurations:

Configuration description

Labeling scheme introduced to describe considered telescope configurations:

Configuration 'WN-'

- DUT and two sensor planes close to it: —
- additional plane with narrow gap: N
- additional plane with wide gap: W d_{max}=100 mm

Configuration description

Labeling scheme introduced to describe considered telescope configurations:

- DUT and two sensor planes close to it: —
- additional plane with narrow gap: N
- additional plane with wide gap: W d_{max}=100 mm

Configuration description

Labeling scheme introduced to describe considered telescope configurations:

We assume that d_{min} (2 to 5 mm) corresponds to the sensor in front of DUT

General observation: best performance is obtained if

- \Rightarrow one high resolution plane is placed in front of DUT (at d_{min} from DUT)
- \Rightarrow second high resolution plane usually placed behind DUT

4 (1+3) telescope planes

Simplest case: 1 high resolution (HR) and 3 standard sensor planes (120 μm each)

Expected position error at DUT, σ_{DUT} , as a function of the HR plane resolution, σ_{HR} , for different telescope configurations: 6 GeV e^- beam, DUT thickness of 500 μm

4 (1+3) telescope planes

Simplest case: 1 high resolution (HR) and 3 standard sensor planes (120 μm each)

Expected position error at DUT, σ_{DUT} , as a function of the DUT thickness, Δ_{DUT} , for different telescope configurations: 6 GeV e^- beam, HR resolution 1.2 μm

4 (1+3) telescope planes

Assuming HR plane resolution is not better than 1 μm and DUT is thiner than 1 mm:

WN– configuration gives best precision for $\Delta_{DUT} \ge 200 \mu m$

4 (1+3) telescope planes

Configuration choice as a function of DUT thickness and HR plane resolution: for minimum distance between HR plane and DUT, $d_{min} = 5 \text{ mm}$

Beam telescope geometry study (II)

4 (2+2) telescope planes

Two high resolution + two standard planes

Expected position error at DUT, σ_{DUT} , as a function of the HR planes resolution, σ_{HR} , for different telescope configurations: 6 GeV e^- beam, DUT thickness of 500 μm

4 (2+2) telescope planes

Two high resolution + two standard planes

Expected position error at DUT, σ_{DUT} , as a function of the DUT thickness, Δ_{DUT} , for different telescope configurations: 6 GeV e^- beam, HR resolution 1.2 μm

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

2 HR layer + 2 standard layers, d_{min} = 5 mm

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

250

0

 $d_{min} = 4 \text{ mm}$ F_{g}^{2} F_{g}^{2} Above dashed line: both HR planes in front of DUT $I_{J}^{1,5}$ Below dashed line: second HR plane behind DUT $I_{J}^{1,5}$

2 HR layer + 2 standard layers, d_{min} = 4 mm

-NW

-ww

w-w

N-W

N-N

WN-

NN-

WW-

750

1000

 $\Delta_{\mathbf{DUT}} [\mu \mathbf{m}]$

500

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

 $d_{min} = 3 \text{ mm}$ Above dashed line: both HR planes in front of **DUT**

Below dashed line: second HR plane behind **DUT**

2 HR layer + 2 standard layers, d_{min} = 3 mm

4 (2+2) telescope planes

Two high resolution + two standard planes: more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

 $d_{min} = 2 \text{ mm}$ Above dashed line: both HR planes in front of DUT 1.5Below dashed line: second HR plane behind DUT 1

2 HR layer + 2 standard layers, d_{min} = 2 mm

4 (2+2) telescope planes

Assuming HR plane resolution is of the order of 1 μm two configurations contribute most:

N–W configuration gives best precision for thin DUT, small d_{min}

W–W configuration gives best precision for thick DUT, larger d_{min}

4 (2+2) telescope planes

Assuming HR plane resolution $\sigma_{HR} \ge 1.5 \mu m$

best precision for most Δ_{DUT} values is obtained with WN– configuration

In most cases both HR planes should be placed in front of DUT !

4 telescope planes

Configuration with two HR planes always gives better precision than with one HR plane.

Expected position error at DUT, σ_{DUT} , as a function of the HR planes resolution, σ_{HR} , for best telescope configurations:

4 telescope planes

Configuration with two HR planes always gives better precision than with one HR plane.

2 HR planes

 $d_{min} = 5 \text{ mm}$

Expected statistical precision of position reconstruction at DUT [μm]:

1 HR plane

Beam telescope geometry study (II)

4 telescope planes

Configuration with two HR planes always gives better precision than with one HR plane.

2 HR planes

 $d_{min} = 2 \text{ mm}$

Expected statistical precision of position reconstruction at DUT [μm]:

Beam telescope geometry study (II)

6 (1+5) telescope planes

One high resolution and 5 standard telescope planes

2 HR layer + 4 standard layers, d_{min} = 5 mm

6 (2+4) telescope planes

Two high resolution + four standard planes: even more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

A.F.Żarnecki

6 (2+4) telescope planes

Two high resolution + four standard planes: even more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

2 HR layer + 4 standard layers, d_{min} = 4 mm

6 (2+4) telescope planes

Two high resolution + four standard planes: even more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

6 (2+4) telescope planes

Two high resolution + four standard planes: even more possibilities!

Configuration choice as a function of DUT thickness and HR plane resolution:

6 (2+4) telescope planes

Assuming HR plane resolution is of the order of 1 μm two configurations contribute most:

WNN–W configuration gives best precision for thin DUT, small d_{min}

WN–WW configuration gives best precision for thick DUT, larger d_{min}

2 HR planes

d_{min}= 5 mm

6 telescope planes

Expected statistical precision of position reconstruction at DUT [μm]:

Second HR plane improves position determination precision by $\sim 0.1 \ \mu m$

2 HR planes

d_{*min*}= 2 mm

6 telescope planes

Expected statistical precision of position reconstruction at DUT [μm]:

Second HR plane improves position determination precision by $\sim 0.1 \ \mu m$

6 vs 4 telescope planes

6 vs 4 telescope planes

With one high resolution plane minimizing distance to DUT is crucial.

4 planes with d_{min}= 2 mm equivalent to 6 planes and d_{min}= 5 mm (for $\sigma_{HR} \sim 1 \mu m$)

6 vs 4 telescope planes

Second high resolution plane gives significant improvement

4 planes with 2 HR plane are better than 6 planes with 1 HR plane (for $\sigma_{HR} < 1.5 \mu m$)

Conclusions

Analytical method used to describe the performance of the telescope with realistic geometry constraints.

The optimum telescope setup is not uniquely defined.

It depends on the number of telescope planes, number of high resolution (HR) planes, position resolution in HR planes, minimum plane–DUT distance and **DUT thickness**.

To achieve error on the reconstructed particle position at DUT of $1\mu m$ at least one high resolution plane is needed (with 6 planes: $\sigma_{HR} \leq 1.2\mu m$)

Significant improvement expected from second HR plane.

If $\sigma_{HR} \sim 1 \mu m$ second HR plane should be placed behind DUT.

With one HR plane it is essential to minimize plane–DUT distance (much less for 2 HR planes)

6 sensor planes always give better position resolution than 4 planes