Determination of CP violation from $higgs o WW, \ ZZ$ decays at PLC

A.F. Żarnecki, Warsaw University

with P. Nieżurawski and M. Krawczyk NŻK

Linear Collider Workshop LCWS'2004 Paris, France, April 19-23, 2004

<u>Outline</u>

- Higgs boson production and decays to WW and ZZ at PLC JHEP 0211 (2002) 034 [hep-ph/0207294]
- Weak (indirect) CP violation in SM-like 2HDM (II) at PLC hep-ph/0403138
 Comparison with LHC and LC hep-ph/0404024
- Direct CP violation in generic model update of hep-ph/0307175

$\gamma\gamma \to \mathcal{H} \to WW, ZZ$

Higgs boson production at the Photon Collider

Production cross section is proportional to the two-photon width

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 M_h^3}{128\sqrt{2} \pi^3} \cdot |\mathcal{A}|^2$$

where:

$$\mathcal{A} = A_W(M_W) + \sum_f N_c Q_f^2 A_f(M_f) + \dots$$
 two-photon amplitude

In SM, dominant contributions to two-photon amplitude \mathcal{A} are due to W^{\pm} and top loops.

Phases of W^{\pm} and top contributions differ!

Both $\Gamma_{\gamma\gamma}$ and the phase of the amplitude $\phi_{\gamma\gamma}$ depend on Higgs-boson couplings !

$\gamma\gamma \to \mathcal{H} \to WW, ZZ$

From the simultaneous fit to the observed W^+W^- and ZZ mass spectra both the two-photon width $\Gamma_{\gamma\gamma}$ and phase $\phi_{\gamma\gamma}$ can be determined.

For SM: $\Gamma_{\gamma\gamma}$ with precision \sim 4 - 9%, $\phi_{\gamma\gamma}$ with precision 40 - 120 mrad JHEP 0211 (2002) 034 [hep-ph/0207294]

A.F.Żarnecki, ECFA/DESY workshop, November 2002, Praha (including systematic uncertainties)

SM-like 2HDM(II)

We consider SM-like solution B_h

Basic couplings, relative to SM:

$$\chi_x = g_{\mathcal{H}xx}/g_{\mathcal{H}xx}^{SM} \quad \mathcal{H} = h, H, A$$

	h	H	A
χ_u	-1	$-rac{1}{ aneta}$	$-i\;\gamma_5\;rac{1}{ aneta}$
χ_d	+1	- tan eta	$-i \ \gamma_5 \ aneta$
χ_V	$\cos(2\beta)$	$-\sin(2eta)$	0

CP conserving model:

Higgs production ($\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$) and decays depend on $\tan\beta$ only.

For charged Higgs boson couplings (loop contribution to $\Gamma_{\gamma\gamma}$) we set

$$M_{H^{\pm}} = 800 \ GeV \qquad \mu = 0$$

CP violation

Mass eigenstates of the neutral Higgs-bosons h_1 , h_2 and h_3 do not need to match CP eigenstates h, H and A.

We consider weak CP violation through a small mixing between *H* and *A* states:

$$\begin{array}{l} \chi_X^{h_1} \approx \chi_X^h \\ \chi_X^{h_2} \approx \chi_X^H \cdot \cos \Phi_{HA} + \chi_X^A \cdot \sin \Phi_{HA} \\ \chi_X^{h_3} \approx \chi_X^A \cdot \cos \Phi_{HA} - \chi_X^H \cdot \sin \Phi_{HA} \end{array}$$

⇒ additional model parameter:

CP-violating mixing phase Φ_{HA}

We consider h_2 production and decays

Higgs boson h_2

Two-photon width and phase measurement for different $\tan \beta$ and Φ_{HA}

 1σ contours for 1 year of PC running statistical errors only

$$M_h$$
=120 GeV, M_{H^+} =800 GeV

Expected precision at PLC: (for small mixing i.e. $\Phi_{HA} \sim 0$)

- \sim 10 % for tan β
- \sim 100 mrad for Φ_{HA} (for low tan β)

Higgs boson h_2

Solution B_h (with CP violation) \Rightarrow two free parameters (tan β and Φ_{HA})

Expected precision in $\tan \beta$ and Φ_{HA} determination at PLC (stat.+sys. errors)

CP violating H–A mixing angle can be precisely measured, if $tan \beta$ is not too large

Comparison with LHC and LC

Higgs boson h_2

(Solution B_h with weak CP violation)

Expected Higgs-boson production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of $\tan\beta$ and the CP violating mixing angle Φ_{HA}

Comparison with LHC and LC

LHC ⊕ LC ⊕ PLC

Determination of $\tan \beta$ and the CP violating mixing angle Φ_{HA} (1 σ contours) for 2HDM (II) solution B_h with CP violation ($M_{h_2}=250$ GeV, $\tan \beta=0.5$):

$$\Phi_{HA} = -0.2$$

CP violating H–A mixing can be precisely measured in SM-like 2HDM (II) solution B_h .

Can we distinguish between solution B_h with CP violation $(\tan \beta \text{ and } \Phi_{HA})$ from CP conserving 2HDM (II) (also with two parameters: $\tan \beta$ and α)?

Comparison

$\mathsf{LHC} \oplus \mathsf{LC} \oplus \mathsf{PLC}$

2HDM (II) couplings determined (assuming CP conservation) at LHC, LC and PLC for h_2 (solution B_h) with $M_{h_2}=250$ GeV and $\tan\beta=0.5$

CP conserving 2HDM (II) can be excluded.

Only from combined analysis of LHC, LC and PLC measurements we can establish indirect CP violation in 2HDM (II)

Couplings

Model with a generic tensor couplings of a Higgs boson \mathcal{H} , to ZZ and W^+W^- :

$$g_{\mathcal{H}ZZ} = ig \frac{M_Z}{\cos \theta_W} \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_Z^2} \right)$$

$$g_{\mathcal{H}WW} = ig M_W \left(\lambda_H \cdot g^{\mu\nu} + \lambda_A \cdot \varepsilon^{\mu\nu\rho\sigma} \frac{(p_1 + p_2)_\rho (p_1 - p_2)_\sigma}{M_W^2} \right)$$
with: $\lambda_H = \lambda \cdot \cos \Phi_{HA}$ $\lambda_A = \lambda \cdot \sin \Phi_{HA}$

Standard Model (scalar) couplings are reproduced for $\Phi_{HA} = 0$ ($\lambda_H = 1$ and $\lambda_A = 0$).

Pseudoscalar Higgs boson corresponds to $\lambda_H = 0$ and $\Phi_{HA} = \frac{\pi}{2} \lambda_A = 1$.

We consider small CP violation (small deviations from SM), i.e. $|\Phi_{HA}| \ll 1$

Model: S.Y. Choi, D.J. Miller, M.M. Mühlleitner and P.M. Zerwas, hep-ph/0210077; D.J. Miller, S.Y. Choi, B. Eberle, M.M. Mühlleitner and P.M. Zerwas, Phys. Lett. B505 (2001) 149; D.J. Miller, *Spin and Parity in the HZZ vertex*, ECFA/DESY meeting, Prague, November 2002.

Higgs CP from $\mathcal{H} \to \tau^+\tau^-$: K. Desch, A. Imhof, Z. Was, M. Worek, hep-ph/0307331; K. Desch, Z. Was, M. Worek, Eur.Phys.J.C29 (2003) 491, hep-ph/0302046.

Higgs CP from $\mathcal{H} \to t\bar{t}$: E. Asakawa, K. Hagiwara, hep-ph/0305323.

Angular distributions

Angular variables used in the analysis of higgs CP-properties:

- higgs decay angle angle ⊖_h
- polar angles ⊝₁ and ⊝₂
- angle between two Z/W decay planes,

$$\Delta \phi = \phi_2 - \phi_1$$

To simplify the analysis, we introduce

$$\zeta = \frac{\sin^2 \Theta_1 \cdot \sin^2 \Theta_2}{(1 + \cos^2 \Theta_1) \cdot (1 + \cos^2 \Theta_2)}$$

ratio of the distributions expected for a scalar and a pseudoscalar higgs (for $M_h \gg M_Z$).

All polar angles are calculated in the rest frame of the decaying particle.

Angular distributions

Normalized angular distributions expected for scalar and pseudoscalar higgs,

for
$$\mathcal{H} \to ZZ \to l^+l^-jj$$
 $M_{\mathcal{H}} = 300 \text{ GeV}.$

Both distributions clearly distinguish between decays of scalar and pseudoscalar higgs.

Nonuniformity of selection efficiency in $\Delta \phi$ largest for small m_h

$$m_h$$
 = 200 GeV, $\sqrt{s_{ee}}$ =305 GeV

$$m_h$$
 = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

Effect much stronger for background events and pseudoscalar higgs due to different $\cos\theta_{j,l}$ distribution

Measured $\Delta \phi$ and ζ distributions for $h \to ZZ \to q\bar{q} \ l^+ l^- \ m_h = 200 \ \text{GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}$ =305 GeV, $\mathcal{L}=610 \ fb^{-1}$ $\Rightarrow \sim$ 675 reconstructed SM higgs events expected + 145 ZZ background events

Measured $\Delta \phi_{ZZ}$ distribution:

NŽK — scalar — pseudoscalar background 150 100 $q \leftrightarrow \bar{q} \text{ ambiguity} \Rightarrow 0 \leq \Delta \phi \leq \pi$

Measured ζ_{ZZ} distribution:

pseudoscalar normalized to the same number of events

Sensitivity

Statistical error on Φ_{HA} from fits to different distributions \Rightarrow

Fits of two parameters:

$$\Phi_{HA}$$
 + normalization

We assume here:

$$\Gamma_{\gamma\gamma} = \Gamma_{\gamma\gamma}^{SM}$$
 $\phi_{\gamma\gamma} = \phi_{\gamma\gamma}^{SM}$
 $\lambda = \lambda^{SM} \equiv 1$

In the general case We can not assume that $\Gamma_{\gamma\gamma}$, $\phi_{\gamma\gamma}$ and λ are the same as in the SM \Rightarrow fit all distributions simultaneously to constrain all parameters

Results

Combined measurement for W^+W^- and ZZ decay channels

from simultaneously fit of $\Gamma_{\gamma\gamma}$, $\phi_{\gamma\gamma}$, λ and Φ_{HA} to all considered distributions

Measurement error for Higgs-boson couplings to vector bosons:

assuming SM-like couplings: $\lambda = 1$, $\Phi_{HA} = 0$

 $W^+W^- \Rightarrow$ higher statistics, but huge background \Rightarrow large systematic uncertainties

Summary

Using W^+W^- and ZZ final states both the partial width $\Gamma_{\gamma\gamma}$ and the phase of the ${\cal H} \to \gamma\gamma$ amplitude $\phi_{\gamma\gamma}$ can be measured at the Photon Linear Collider. Mass range 200 $< M_{{\cal H}} <$ 350 GeV considered.

Both $\tan \beta$ and the CP violating H–A mixing phase Φ_{HA} can be measured at PLC, assuming solution B_h of 2HDM (II).

 Φ_{HA} with precision $\Delta\Phi_{HA} \leq 0.1$ rad, for $\tan \beta < 1$

In general case, combined analysis of LHC, LC and PLC measurements is needed to establish weak CP violation.

From combined measurement of angular correlations in the W^+W^- and ZZ decays CP violation in the higgs couplings to vector bosons can be determined to about 10%.

$\gamma\gamma \to \mathcal{H} \to WW, ZZ$

We consider Higgs boson production and decays to WW/ZZ, for masses 200–350 GeV.

For resonant $\gamma \gamma \rightarrow h \rightarrow W^+W^-$ signal

there is a large non-resonant bg.

Large interference effects are expected in the considered mass range

Interference is sensitive to the phase of the two-gamma amplitude

$\gamma\gamma \to \mathcal{H} \to WW, ZZ$

Simulation

 $\gamma\gamma$ spectra from **CompAZ** hep-ex/0207021

 $\gamma\gamma \to W^+W^-$, ZZ events generated with PYTHIA 6.152

events reweighted to take into account:

- beam polarization
- Higgs production and interference

detector simulation with SIMDET v. 3.01

total $\gamma\gamma$ luminosity: 600 – 1000 fb^{-1}

High $W_{\gamma\gamma}$ peak: 75 - 115 fb^{-1}

for $\sqrt{s_{ee}}$ = 305 - 500 GeV

Parametrization

"Measured" invariant mass distribution for selected W^+W^- and ZZ events is described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution parametrized as a function of $W_{\gamma\gamma}$
- \Rightarrow mass spectra can be calculated for any $\sqrt{s_{ee}}$ and m_h without time-consuming MC simulation
- ⇒ can be used for fast simulation and fitting

Systematic uncertainties

Influence of systematic uncertainties on the $tan \beta$ determination is estimated by adding additional free parameters to the fit:

Uncertainties:

Parameters:

luminosity

 \Rightarrow overall normalization relative normalization of WW and ZZ samples fixed

- energy scale
 - Higgs boson mass

 → Higgs boson mass
- mass resolution
- → Higgs boson width
- Higgs boson width
 - luminosity spectra ⇒ spectra shape variations:

$$\frac{dL}{dW_{\gamma\gamma}} = \frac{dL^{CompAZ}}{dW_{\gamma\gamma}} (1 + A \cdot \sin \pi x + B \cdot \sin 2\pi x) \quad x = \frac{W_{\gamma\gamma} - W_{min}}{W_{max} - W_{min}}$$

Higgs boson h_2

Influence of systematic uncertainties on $tan \beta$ and Φ_{HA} measurement

Correlation between $\tan \beta$ and Φ_{HA} increases expected measurement errors

Comparison with LHC and LC

CP conserving 2HDM (II)

Expected Higgs-boson h production rates times W^+W^-/ZZ branching ratios, relative to SM predictions, as a function of basic relative couplings:

Invariant mass cut optimized for background rejection

$$h o ZZ o q \bar{q} \, l^+ l^- \qquad m_h$$
=250 GeV:

$$m_b$$
=250 GeV:

$$h o WW o qar q qar q \hspace{1cm} m_h$$
=170 GeV:

$$m_h$$
=170 GeV:

SM higgs selection efficiency
$$\sim$$
40%

(for
$$ZZ \to q\bar{q} l^+l^-$$
 events, $l = \mu, e$)

$$\times BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\%$$

(for
$$WW o q \bar q q \bar q$$
 events)

$$\times BR(WW \rightarrow q\bar{q}q\bar{q}) \approx 46.9\%$$

Expected accuracy of decay angles measurement:

All angles can be measured with high accuracy Shape described by Breit-Wigner distribution

Selection efficiency as a function of the azimuthal angle ϕ_q

$$m_h$$
 = 300 GeV, $\sqrt{s_{ee}}$ =418 GeV

similar pattern observed for $Z \rightarrow l^- l^+$

Acceptance losses for $\phi = 0, \pi, \dots$ are due to the jet/lepton going in the beam direction

Selection efficiency for $\phi_j \approx 0$:

 $\operatorname{red lines:} \cos \theta_{j}^{LAB} \; = \pm \cos \theta_{Z}^{LAB}$

Measured M_{ZZ} and Θ_h distributions for $h \to ZZ \to q\bar{q} \ l^+l^- \ m_h = 200 \ {\rm GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}$ =305 GeV, $\mathcal{L}=610 \ fb^{-1}$

Measured M_{ZZ} distribution:

NŻK — scalar — pseudoscalar background 200 — 100 — 180 190 200 210 220 M_{ZZ} [GeV]

Measured Θ_h distribution:

pseudoscalar normalized to the same number of events

Sensitive to CP violation mainly due to interference with SM background.

Measured $\Delta \phi$ and ζ distributions for $h \to WW \to q\bar{q} \ l^+ l^- \ m_h = 200 \ {\rm GeV}$ after 1 year of PC running at $\sqrt{s_{ee}}$ =305 GeV, $\mathcal{L}=610 \ fb^{-1}$

 \Rightarrow ~8000 reconstructed SM higgs events expected + \sim 170 000 background events

Measured $\Delta \phi_{WW}$ distribution:

Measured ζ_{WW} distribution:

