Tools for photon physics

What do we need for photon-photon studies? (as far as generators are concerned)

A.F. Żarnecki, Warsaw University

with P. Nieżurawski and M. Krawczyk

First Workshop of the ECFA Study of Physics and Detectors for a Linear Collider Montpellier, France, November 15, 2003

$\gamma\gamma$ spectra

Variable photon beam energy and polarization (in event generation):

- as user routine
 eg. CompAZ spectra can be interfaced with CompHEP
- ⇒ as user envent inputeg. CIRCE2 with PYTHIA

Circular photon polarization:

- fixed polarization available \Rightarrow generate J=0 and J=2 separately eg. in CompHEP, for some processes in PYTHIA
- variable polarization would allow for generating complete process in one run...

Linear polarization!?

$\gamma\gamma$ processes

For studying different models:

- Higgs tree-level couplings defined by user eg. 2HDM(II)
 - \Rightarrow calculation of loop couplings eg. $\gamma\gamma \rightarrow h$
- generic Higgs couplings (eg. models with CP-violation)

For detailed background analysis:

higher order corrections to different processes

eg. in
$$\gamma\gamma \to Q\bar{Q}(g)$$
, NLO crucial for $J=0$

processes with loop couplings

$$\gamma\gamma \to ZZ$$
, $\gamma\gamma \to Z\gamma$, $\gamma\gamma \to \gamma\gamma$

Resolved photon processes

Routines calculating differential cross sections should be available to the user.

Interference and correlations

Calculations performed on helicity amplitude level

⇒ interference between different processes taken into account

This is crucial for many studies

i.e.
$$\gamma\gamma \to (h) \to W^+W^-$$
, $\gamma\gamma \to (h) \to ZZ$, $\gamma\gamma \to (h) \to t\bar{t}$

Secondary decays with proper treatment of angular correlations both for signal and background!

i.e.
$$\gamma \gamma \to ZZ \to l^+ l^- j j$$
, $\gamma \gamma \to \tau^+ \tau^- \to \pi^+ \pi^\circ \pi^- \pi^\circ \nu \nu$, $\gamma \gamma \to t \bar{t} \to 6 \ jets$

PYTHIA properly describes all angular correlations for Higgs decays (eg. $h \to ZZ \to l^+l^-jj$), but NOT for background!...

Other codes

Proper interface of parton-level NLO simulation with PS and hadronization...

<u>User</u>

Easy user interface, well defined ("physical") input parameters

Detailed documentation for non-experts (experimentalists!)

Possibility of including user defined processes

<u>General</u>

Monte Carlo Guide for non-experts and/or web page, with description and comparison of all generators would be very nice...