Sensitivity to top FCNC decay $t \rightarrow ch$ at future e^+e^- colliders

Aleksander Filip Żarnecki

Faculty of Physics, University of Warsaw

Workshop on Top physics at Lepton Colliders IFIC - Valencia - Spain, June 30 - July 3, 2015

2 WHIZARD Simulation

3 Event analysis

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM):

 $BR(t \rightarrow c \gamma) \sim 5 \cdot 10^{-14}$ $BR(t \rightarrow c Z) \sim 1 \cdot 10^{-14}$ $BR(t \rightarrow c g) \sim 5 \cdot 10^{-12}$ $BR(t \rightarrow c h) \sim 3 \cdot 10^{-15}$

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM):

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c h) &\sim & 3 \cdot 10^{-15} \end{array}$

Decay $t \rightarrow c h$ is most interesting:

- well constrained kinematics
- test of Higgs boson couplings
- seems to be most difficult for LHC

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM):

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c h) &\sim & 3 \cdot 10^{-15} \end{array}$

Decay $t \rightarrow c h$ is most interesting:

- well constrained kinematics
- test of Higgs boson couplings

• seems to be most difficult for LHC

LHC (Moriond 2015): $BR(t \rightarrow ch) < 0.56\%$ (CMS) $BR(t \rightarrow ch) < 0.79\%$ (ATLAS)

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM):

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c h) &\sim & 3 \cdot 10^{-15} \end{array}$

Decay $t \rightarrow c h$ is most interesting:

- well constrained kinematics
- test of Higgs boson couplings
- seems to be most difficult for LHC

Estimated HL-LHC reach: (Snowmass Top WG report, 2013) $\frac{BR(t \rightarrow qh)}{2 \cdot 10^{-4}} \sim 2 \cdot 10^{-4}$

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM):

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c h) &\sim & 3 \cdot 10^{-15} \end{array}$

Decay $t \rightarrow c h$ is most interesting:

- well constrained kinematics
- test of Higgs boson couplings
- seems to be most difficult for LHC

Two Higgs Doublet Model (2HDM) as a test scenario:

- one of simplest extensions of the SM
- large enhancement both on tree and loop level possible $BR(t \rightarrow c h)$ up to 10^{-2} and 10^{-4} , respectively

• BR($t \rightarrow ch_1$) = 10^{-3}

Test configuration of the model:

• BR $(h \rightarrow b\bar{b}) = 100\%$

Generated samples:

- $e^+e^- \longrightarrow t\bar{t}$ (2HDM/SM)
- $e^+e^- \longrightarrow ch_1 \bar{t}, \ t \bar{c} h_1$ (2HDM)
- $e^+e^- \longrightarrow cb\bar{b}\bar{t}, \ t\bar{c}b\bar{b}$ (SM)

Model

Dedicated implementation of 2HDM(III) prepared by Florian Staub. Many thanks also due to Juergen Reuter and Wolfgang Kilian...

\Rightarrow main background to FCNC decays from standard decay channels

(

in particular from $t
ightarrow b {\cal W}^+$ followed by ${\cal W}^+
ightarrow c ar b$

Assume that we can select high purity $t\bar{t}$ sample

WHIZARD

Model

Dedicated implementation of 2HDM(III) prepared by Florian Staub. Many thanks also due to Juergen Reuter and Wolfgang Kilian...

Test configuration of the model:

• $m_{h_1} = 125 \text{ GeV}$

•
$$\mathsf{BR}(t o ch_1) = 10^{-3}$$

• BR
$$(h
ightarrow bar{b}) = 100\%$$

Generated samples:

• $e^+e^- \longrightarrow t\bar{t}$ (2HDM/SM)

•
$$e^+e^- \longrightarrow ch_1 \overline{t}, \ t \overline{c} h_1 \ (2 {
m HDM})$$

•
$$e^+e^- \longrightarrow cb\bar{b}\bar{t}, \ t\bar{c}b\bar{b}$$
 (SM)

Dedicated implementation of 2HDM(III) prepared by Florian Staub. Many thanks also due to Juergen Reuter and Wolfgang Kilian...

Test configuration of the model:

• $m_{h_1} = 125 \text{ GeV}$

• BR
$$(t
ightarrow ch_1) = 10^{-3}$$

• BR $(h \rightarrow b\bar{b}) = 100\%$

Generated samples:

- $e^+e^- \longrightarrow t\bar{t}$ (2HDM/SM)
- $e^+e^- \longrightarrow ch_1 \overline{t}, \ t \overline{c} h_1$ (2HDM)
- $e^+e^- \longrightarrow cb\bar{b}\bar{t}, \ t\bar{c}b\bar{b}$ (SM)

Assume that we can select high purity $t\bar{t}$ sample

 \Rightarrow main background to FCNC decays from standard decay channels in particular from $t \rightarrow bW^+$ followed by $W^+ \rightarrow c\bar{b}$

All events generated with CIRCE1 spectra + ISR. No polarization. Only t, W and h defined to be unstable. No hadronization/decays. No generator-level cuts imposed.

Model

WHIZARD

Very simplified detector description

- detector acceptance for leptons: $|\cos \theta_l| < 0.995$
- detector acceptance for jets: $|\cos \theta_i| < 0.975$
- jet energy smearing: $\sigma_E = \begin{cases} \frac{S}{\sqrt{E}} & \text{for } E < 100 \, GeV \\ \frac{S}{\sqrt{100 \, GeV}} & E > 100 \, GeV \end{cases}$

with S = 30%, 50% and 80% [GeV^{1/2}]

• *b* tagging (misstagging) efficiencies: (LCFI+ package)

Scenario	b	С	uds
Ideal	100%	0%	0%
А	90%	30%	4%
В	80%	8%	0.8%
С	70%	2%	0.2%
D	60%	0.4%	0.08%

Running scenarios

Reference setup:

• $\sqrt{s} = 500$ GeV (assumed for initial ILC running), 500 fb⁻¹ (unpol.)

Other options:

- $\sqrt{s} = 380 \text{ GeV}$ (initial stage for CLIC running)
- $\sqrt{s} = 1000$ GeV (possible ILC/CLIC upgrade)

Limits calculated for integrated luminosities from 300 to 5000 ${\rm fb}^{-1}$

H-20 scenario for ILC

- starting at $\sqrt{s} = 500 \text{ GeV}$ with 500 fb⁻¹ in 4 years (polarized!)
- total of 4000 fb⁻¹ at $\sqrt{s} = 500$ GeV (after 17 years)

$t\bar{t}$ final state selection

"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t

$t\bar{t}$ final state selection

"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t

Event selection cutsfor $\sqrt{s} = 500$ GeV, $30\%/\sqrt{E}$ jet energy resolutionSemileptonic:Fully hadronic:

- Missing $p_t > 20$ GeV
- Single lepton with $p_t > 15 \text{ GeV}$
- 4 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged

- Missing $p_t < 10 \text{ GeV}$
- No lepton with $p_t > 10 \text{ GeV}$
- 6 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged

Top reconstruction

Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Semileptonic events (signal sample):

Top reconstruction

Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Proper combination can be easily identified

Fully hadronic events

400

GeV]

Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

Invariant mass of two jets from "signal" top - all combinations

Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

Invariant mass of two jets from "signal" top - best background fit

Signal selection

Cut based approach: Higgs candidate events W^{\pm} veto used: events with 73.5 < M_{ba} < 87.3 GeV rejected ($\pm 3\sigma$)

Invariant mass of two b-jets jets after W^{\pm} veto: signal vs background

Alternative approach - compare two hypothesis:

• background hypothesis

$$\chi^2_{bg} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bq} - m_W}{\sigma_{W,had}}\right)^2$$

signal hypothesis

$$\chi^2_{sig} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bb} - m_h}{\sigma_h}\right)^2$$

Independent search for best background and signal combinations

FNCULTY OF PHYSICS

Hypothesis comparison

80% *b*-tagging efficiency (scenario B)

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background

Ideal *b*-tagging Very efficient background rejection possible

Signal selection

PACULTY OF PHYSICS

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background

80% *b*-tagging efficiency (scenario B) Very efficient background rejection possible

Results

Expected events

For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

Semileptonic	Ideal b-tagging		Scenario B	
	tīt (SM)	Signal	tī (SM)	Signal
All	268'000	548	268'000	548
Single lepton + p_t	102'000	149	102'000	149
4 jets	75'700	122	75'700	122
3 b-tags	64.3	122	2'480	61.3
W veto	5.44	88.2	24.6	45.1
h mass window	0.88	81.5	3.5	39.3
$\chi^2~{ m cut}$	0.72	65.0	0.80	31.2
h mass window	0.38	62.2	0.71	29.6

Results

Expected events

For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

Fully hadronic	Ideal b-tagging		Scenario B	
	tīt (SM)	Signal	tī (SM)	Signal
All	268'000	548	268'000	548
No leptons, no p_t	112'000	343	112'000	343
6 jets	73'300	236	73'300	236
3 b-tags	130.1	236	4'680	118
W veto	9.7	160	31.3	79.0
h mass window	1.48	152	3.48	70.8
$\chi^2~{ m cut}$	1.41	150	1.25	69.2
h mass window	0.68	143	0.89	65.4

Results

Expected limits

Limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ expected for 500 fb⁻¹ @ 500 GeV from combined analysis (semileptonic+hadronic channels)

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 30%

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 50%

Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 80%

Signal - background separation still possible, but with decreasing efficiency

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ for 500 fb⁻¹ @ 500 GeV and different jet energy resolutions assumed

Worsening jet energy resolution \Rightarrow tighter cuts & b-tagging required

Jet energy resolution and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Collision energy 500 GeV

Collision energy and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 30%

Collision energy and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Collision energy and statistics

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (τ , B...)
- very rough description of detector effects

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (τ , B...)
- very rough description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angular distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta\chi^2$)

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (τ , B...)
- very rough description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angular distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta\chi^2$)

\Rightarrow Results are just estimates!

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Similar sensitivity at different energies, measurement is statistics limitted.

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Similar sensitivity at different energies, measurement is statistics limitted.

Selection efficiency strongly depends on the jet energy resolution At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Similar sensitivity at different energies, measurement is statistics limitted.

Selection efficiency strongly depends on the jet energy resolution At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$

Flavour tagging preformance crucial for the analysis ⇒ possible benchmark for optimization of detector design

Thank you!

Expected maximal branching rations for different models Significant differences between papers - overall limit ranges given

Model	$BR(t \to c h)$	$BR(t \! ightarrow \! c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \rightarrow c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10^{-14}
2HDM	$10^{-5} - 10^{-4}$	10^{-9}	10 ⁻⁸	10^{-10}
2HDM (FV)	10 ⁻³ - 10 ⁻²	$10^{-6} - 10^{-7}$	10^{-4}	10^{-6}
MSSM	$10^{-5} - 10^{-4}$	10^{-8} - 10^{-6}	10^{-7} - 10^{-4}	$10^{-8} - 10^{-6}$
<i>℟</i> SUSY	$10^{-9} - 10^{-6}$	10^{-9} - 10^{-5}	10 ⁻⁵ - 10 ⁻³	$10^{-6} - 10^{-4}$
Little Higgs	10 ⁻⁵	$1.3\cdot 10^{-7}$	$1.4\cdot10^{-2}$	$2.6\cdot 10^{-5}$
Quark Singlet	$4.1 \cdot 10^{-5}$	$7.5\cdot 10^{-9}$	$1.5\cdot 10^{-7}$	$1.1\cdot 10^{-4}$
Randal-Sundrum	10 ⁻⁴	10^{-9}	10^{-10}	10^{-3}

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 380 GeV

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 500 GeV

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 1000 GeV

Signal - background separation improves slightly for hadronic events. Visible loss of efficiency in semi-leptonic channel.

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 30%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 80%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 30%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 50%

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Jet energy resolution 80%

Expected limit

Expected 95% C.L. limit on the number of signal events calculated as an average limit from multiple "background only" experiments, with number of observed events generated from Poisson distribution.

