First Results from an Experimental Study of tan β Measurement in $\tau\tau$ Fusion Process

J. Brodowska with A.F. Żarnecki and P. Nieżurawski Warsaw University

<u>Outline</u>

- Motivation
- Generator level results
- Detector level results

Motivation

Measurement of $\tau \tau$ fusion process has been suggested for the precise determination of tan β , for large tan β values S.Y.Choi et al. hep-ph/0404119

 $\sigma(\gamma\gamma \to \tau^+ \tau^- h) \sim \tan^2 \beta$

Irreducible background of four fermion production is small

Experimental Study of tan β Measurement in $\tau\tau$ Fusion Process

Motivation

For $100 fb^{-1}$ of data collected at $\sqrt{s_{\gamma\gamma}}=400$ GeV (monochromatic photon beams !) assuming signal event selection efficiency of 70% ($b\overline{b}$) × 50% ($\tau\tau$) = 35%

Event generation

Signal events $\gamma \gamma \rightarrow \tau \tau h \rightarrow \tau \tau b \overline{b}$ and background events $\gamma \gamma \rightarrow \tau \tau b \overline{b}$ (excluding *h* exchange) were generated using CompHEP 33.23 (A.Pukhov et al. hep-ph/9908288)

Realistic luminosity spectra for Photon Collier was included with CompAZ (A.F.Zarnecki, Acta Phys.Polon. B34 (2003) 2741)

Photon polarization was taken into account.

For $\sqrt{s_{ee}} = 500$ GeV, integrated luminosity expected after one year is $1000 fb^{-1}$ About $130 fb^{-1}$ in the high energy peak ($W_{\gamma\gamma} > 300$ GeV)

Cuts imposed on generator level:

- $b\overline{b}$ invariant mass $80 < M_{bb} < 150 \text{ GeV}$
- For both τ : energy $E_{\tau} > 5 \text{ GeV}$
- For all particles: production angle $|\cos \theta| < 0.99156$ (130 mrad)

Generator level results

Invariant mass distribution on generator level

 $M_h = 110 \text{ GeV}, \tan \beta = 5$

Generator level results

From number of events reconstructed in the ± 5 GeV mass window:

Cross section for $M_h = 110$ GeV and $\tan \beta = 30$

 $\sigma(\gamma\gamma
ightarrow au au h
ightarrow au au b \overline{b}) ~pprox$ 3.6fb

about 25% lower than or monochromatic beam, but total luminosity is an order of magnitude higher !

Experimental analysis

The analysis follows the approach developed in $\gamma \gamma \rightarrow h \rightarrow b\overline{b}$ analysis. \Rightarrow for details see: P.Niezurawski, hep-ph/0503295.

Experimental details taken into account:

- crab-wise crossing of the beams, $\theta_c = 34 \text{ mrad}$
- primary vertex distribution
- overlaying events γγ → hadrons (OE) generated with PYTHIA using realistic γγ-luminosity spectrum (V. Telnov)
- Description of detector performance: Simdet 4.01
- ZVTOP-B-HADRON-TAGGER package used for b-tagging
- Jets reconstructed using Durham algorithm

Event selection

Reconstructed invariant mass of two *b*-tagged jets Tag value $P_b > 0.6$ and $|cos\theta_j| < 0.75$

 $(M_h = 110 \text{ GeV}, \tan \beta = 10)$

Selection efficiency \sim 20% only ! Mainly due to large boost of $b\overline{b}$ system

Mass resolution affected by

- boost of $b\overline{b}$ system
- overlying events
 (2 per bunch crossing, on average)
- escaping neutrinos
 from semi-leptonic b decays

Event selection

Semi-leptonic *b* decays can be identified by reconstructing leptons in *b*-tagged jets. Cosine of the angle between reconstructed lepton and *b*-jet:

Event selection

Reconstructed invariant mass for two *b*-tagged jets: $P_b > 0.6$ and $|cos\theta_j| < 0.75$, after additional requirement $\cos \theta_{lb} < 0.9$: selection efficiency down to $\sim 10\%$!

Experimental Study of $\tan\beta$ Measurement in $\tau\tau$ Fusion Process

Reconstructed invariant mass distribution for two *b*-tagged jets, for signal (M_h =110 GeV, tan β = 10) and background events

 \Rightarrow cut against semi-leptonic b decays allows to separate h and Z° peaks

Experimental Study of $\tan\beta$ Measurement in $\tau\tau$ Fusion Process

Expected precision of $\tan \beta$ determination:

after *b* selection cuts only and after tagging of leptonic τ decays using ± 10 GeV mass window

Experimental Study of $\tan\beta$ Measurement in $\tau\tau$ Fusion Process

Conclusions

First experimental study of $\gamma\gamma
ightarrow au au h$ process

Preliminary results not very promising, but:

- No $b\overline{b}$ selection optimization (!)
- Simple mass window approach
- No *τ* identification algorithm (hadronic decays)
 ⇒ room for improvements
- No reducible background simulation e.g. $\gamma\gamma \rightarrow b\overline{b}$ with OE

 \Rightarrow is it possible to reconstruct hadronic τ decays in the forward region?

Angular distributions of:

hadrons from OE

Identification of hadronic τ decays can be very difficult...

A.F.Żarnecki

Generator level results

Boost of $b\overline{b}$ system

Invariant mass of $\tau^+\tau^-$ pair

with lepton cut

0.2

W_{rec} higest b-tag

Reconstructed invariant mass of two *b*-tagged jets for signal and background events $(M_h = 130 \text{ GeV})$

