Searching for top FCNC decay $t \rightarrow ch$ at future e^+e^- colliders

Aleksander Filip Żarnecki

Faculty of Physics, University of Warsaw

June 12, 2015

A.F.Żarnecki (University of Warsaw)

Top FCNC decays

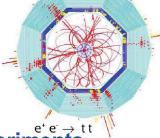
June 12, 2015 1 / 61

Outline

Introduction

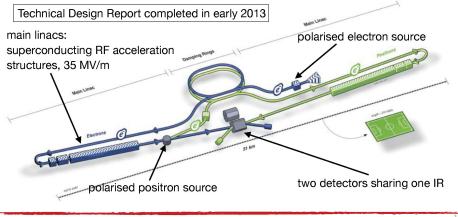
- Projects
- Top measurements
- CLIC staging
- ILC running scenario
- 2 FCNC top decays
 - SM predictions
 - FCNC in 2HDM
 - Model expectations

3 Simulation study


- WHIZARD simulation
- Event analysis
- Results
- Conclusions

Top physics at future e^+e^- colliders (23.01.2015)

Outline


- Introduction
- Motivation

- Future colliders and experiments $e^+e^- \rightarrow tt$
- Prospects for precise measurements
 - threshold scan and top mass
 - Yukawa coupling
 - EW couplings

ILC - The International Linear Collider

- · Currently the most advanced concept for a future energy frontier collider
 - e⁺e⁻ collider, baseline energy 500 GeV, high luminosity: 2 x 10³⁴ cm⁻²s⁻¹
 - staged construction, starting from 250 GeV / 350 GeV
 - upgrade to 1 TeV possible (extension of linacs), luminosity upgrade by rate increase

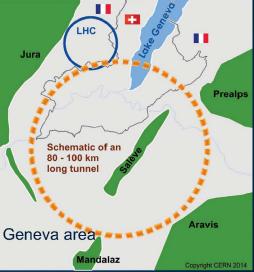
CLIC - The Compact Linear Collider

· A possible future energy frontier collider at CERN

TOP2014, Cannes, October 2014

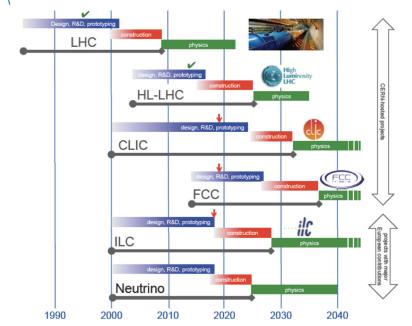
- e⁺e⁻ collisions at up to 3 TeV with high luminosity (~ 6 x 10³⁴ cm⁻²s⁻¹ at 3 TeV)
- Staged construction 350 500 GeV, ~ 1.5 TeV, 3 TeV detailed energies under study, based on physics and technical considerations
- · Based on two-beam acceleration: gradients of 100 MV/m
- Development phase until ~2018 CDR completed in 2012

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)


Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

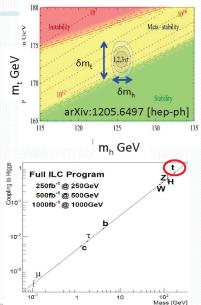

- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

timeline: (HL-)LHC and future collider options

arXiv:1205.6497 [hep-ph]

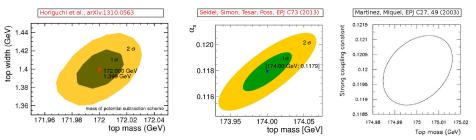
Target around 350GeV

Top mass(m_t)


- Important input parameter
- $-\overline{\text{MS}}$ scheme mass ($\mathbf{m}_t^{\overline{\text{MS}}}$)
 - $\checkmark \quad m_t^{\rm \overline{MS}} = 160~^{\scriptscriptstyle +5}_{\rm -4}~{\rm GeV}~({\rm PDG})$
- Potential subtracted mass (m_t^{PS})

\succ Decay width(Γ_t)

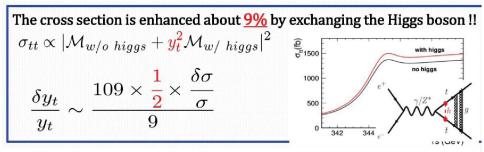
- anomalous coupling
- exotic decay


\succ Top yukawa coupling(y_t)

- Test of higgs mechanism
- $\succ \alpha_s$
- QCD wave function

TOP QUARK MEETING

Fitting for the top mass

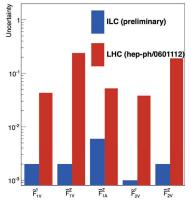

Several authors have applied multi-parameter fits to cross-section obtained in scan (+ other distributions)

```
Minor differences between ILC, CLIC and FCC-ee
```

```
Statistical precision on 1S or PS mass for 10 x 10/fb:
16 – 30 MeV
(range of results can be understood from assumptions and fit details)
```


Top Yukawa coupling at threshold

$$\int \mathcal{L} dt = 100 \text{ fb}^{-1}$$


	(2 + 1) param fit	3 param fit	
mt	19 MeV	29 MeV	Stat. Uncertainties
Гt	38 MeV	39 MeV	Theoretical
yt	4.6%	5.9%	uncertainties ~70 MeV

T. Horiguchi

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

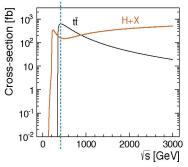
IFICLAL ArXiv: 1307.8102

Precision: cross section ~ 0.5%,Precision APrecision Λ \sim 3-4%Accuracy on CP conserving couplings

- ILC might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14 \text{ TeV}$, 300 fb⁻¹) Disentangling of vector/axial vectol couplings for ILC One variable at a time For LHC However LHC projections from 8 years old study
- Need to control experimental (e.g. Top angle) and theoretical uncertainties (e.g. Electroweak corrections)
 Dedicated work has started
- Potential for CP violating couplings at ILC under study

(However CP violation would rather show up at threshold)

ILC will be indeed high precision machine for electroweak top couplings

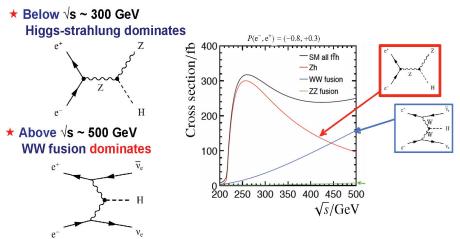

CLIC staging

CLIC is foreseen as a staged machine:

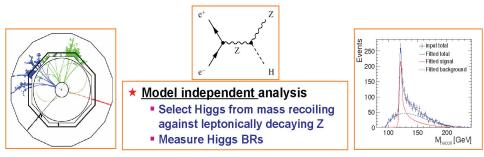
- * First stage focuses on precision SM physics
 - ~350-375 GeV : Higgs and top

- ★ Not the peak of Higgs cross section
 But, luminosity scales with √s
- ★ 250 GeV and 350 GeV give similar precision for coupling measurements
- * With >350 GeV as a first stage:
 - provides access to top physics

★ Energies of subsequent stages motivated by physics


- results from ~14 TeV LHC operation
- direct dark matter searches,

★ A number of SM Higgs processes accessible at CLIC

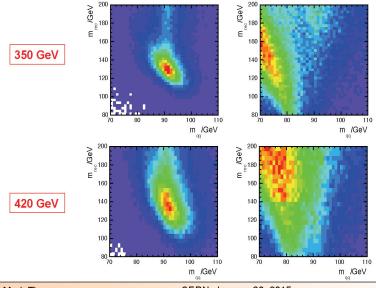

★ At √s ~ 350-450 GeV both contribute

HZ Cross Section revisited

★ During first stage of CLIC: study the Higgs-strahlung process

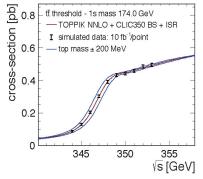
★ Measure Higgs production cross section independent of Higgs decay

- Sensitive to invisible Higgs decay modes
- Absolute measurement of HZ coupling


★ Recent studies demonstrated:

MI measurements with $\ Z \to q \overline{q}$

Full Simulation


t_R

- fermion mass at the electroweak scale
- Yukawa coupling suspiciously close to 1

e.g. top quark mass from threshold scan

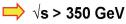
★ Scan with modest lumi (10 fb⁻¹/pt):

 $m_{\rm t} = \frac{1}{\sqrt{2}} Y_{\rm t} v$

t_I

 m_t : ±33 MeV (stat.)

- measurement relatively easy to interpret – "know what you are measuring"
- theory uncertainties relatively small



HZ production

📫 √s ~ 250-450 GeV

Top at theshold

Recoil Mass

📫 √s < 400 GeV

Top pair production

📫 √s > 360 GeV

Top pair BSM

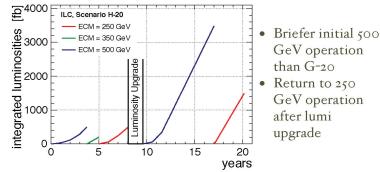
Still good for HZ Provides valid top quark program

ILC running scenario

Construct 500 GeV from start

- 500 GeV scenarios study
 - TDR Baseline
 - Emphasizes higher energy strength of ILC
- Study parameters
 - assume 20 years of operation
 - compare 3 scenarios (studied more)
 - G20, H20, I20
 - Snowmass white paper studied also for comparison
 - arXiv:1310.0763 [hep-ph]
- Draft report: <u>http://pages.uoregon.edu/jimbrau/temp/</u> <u>parameters-draft-150419.pdf</u> - comments welcome!

Assumptions


- Full calendar year is assumed to be 8 months at a 75% efficiency (the RDR assumption). This corresponds to $Y = 1.6 \times 10^7$ seconds of integrated running. (significantly higher than a Snowmass year of 10⁷ seconds.)
- A **ramp-up** of luminosity performance is in general assumed after:
 - (a) initial construction and after 'year o' commissioning;
 - (b) after a downtime for a luminosity upgrade;
 - (c) a change in operational mode which may require some learning curve (e.g. going to 10-Hz collisions).
- For initial physics run *after construction and year o commissioning*, the RDR ramp of 10%, 30%, 60% and 100% is assumed over the first four years.
- The ramp *after the shutdowns for installation of the luminosity upgrade* is assumed slightly shorter (10%, 50%, 100%) with no year 0.
- *Going down in centre of mass energy* from 500 GeV to 350 GeV or 250 GeV is assumed to have no ramp, since there is no machine modification.
- Going to 10-Hz operation at 50% gradient does assume a ramp (25%, 75%, 100%), since 10-Hz affects the entire machine.
- A major 18 month shutdown is assumed for the luminosity upgrade.
- Unlike TDR: 10-Hz and 7-Hz operation assumed at 250 GeV and 350 GeV

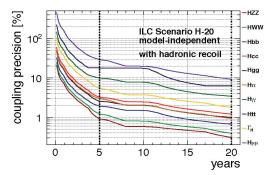
J. Brau/ILC Parameters Jt WG - April 21, 2015 4

H-20 Luminosity profile

	\sqrt{s}	∫£dı	Lpeak	Ramp				Т	T _{tot}	Comment	inst, %
	[GeV]	[fb ⁻¹]	[fb ⁻¹ /a]	1	2	3	4	[a]	[a]		[10 ³⁴ cm ⁻² s ⁻¹]
Physics run	500	500	288	0.1	0.3	0.6	1.0	3.7	3.7	TDR nominal at 5 Hz	1.8
Physics run	350	200	160	1.0	1.0	1.0	1.0	1.3	5.0	TDR nominal at 5 Hz	1.0
Physics run	250	500	240	0.25	0.75	1.0	1.0	3.1	8.1	operation at 10 Hz	1.5
Shutdown								1.5	9.6	Luminosity upgrade	
Physics run	500	3500	576	0.1	0.5	1.0	1.0	7.4	17.0	TDR lumi-up at 5 Hz	3.6
Physics run	250	1500	480	1.0	1.0	1.0	1.0	3.2	20.2	lumi-up operation at 10 Hz	3.0

Table 7: Scenario H-20: Sequence of energy stages and their real-time conditions.

Integrated Luminosities [fb]


J. Brau/ILC Parameters Jt WG - April 21, 2015 2

23

Higgs couplings (H-20)

8

- H-20 preferred for
 - slightly better early precision (compared to G-20)
 - current best reliability of m_h and $\sigma(e^+e^- \rightarrow Zh)$ measurements when done at 250 GeV
- Model independent
 - Higgs recoil from hadronic decaying Z is nearly model independent
- Recommended H-20 to ILC PAC last week

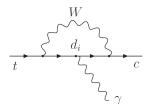
FCNC top decays

Standard Model

On the tree level only charged current top decays are allowed in the Standard Model

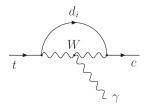
 $t \rightarrow W^+ b$ dominant, BR = 91% $t \rightarrow W^+ s/d$ CKM suppressed

FCNC top decays are only possible on loop level. Four two-particle final states can be considered:

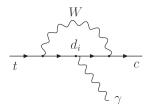

 $t \rightarrow q\gamma, qZ, qg, qH \quad q = u, c$

RPP2014 experimental limits:

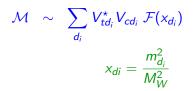
$$BR(t \rightarrow \gamma q) < 5.9 \cdot 10^{-3}$$
 95% CL
 $BR(t \rightarrow Z q) < 2.1 \cdot 10^{-3}$

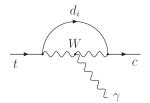


Leading order diagrams for FCNC decay $t
ightarrow c \; \gamma$

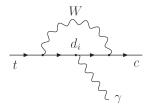

When neglecting down quark masses, the decay amplitude is suppressed (GIM):

$$\mathcal{M}~\sim~\sum_{d_i}V^{\star}_{td_i}V_{cd_i}~=~0$$





Leading order diagrams for FCNC decay $t
ightarrow c \; \gamma$


However, taking into account quark masses, GIM cancelation is not perfect

Leading order diagrams for FCNC decay $t \rightarrow c ~\gamma$

Assuming $m_d = m_s \ll m_b$ the leading contribution is:

 $\mathcal{M} ~\sim~ V_{tb}^{\star} V_{cb} \left[\mathcal{F}(x_b) - \mathcal{F}(0)
ight]$

Resulting decay width:

$$\Gamma(t
ightarrow c \gamma) ~\sim~ |V_{bc}|^2 ~lpha_{em}^3$$

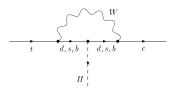
 $m_t \left(\frac{m_b}{M_W}\right)^4$

Double suppression due to

- CKM: |V_{bc}| ~ 0.04
- GIM: $\frac{m_b}{M_W} \sim 0.04$

Standard Model expectations for the FCNC top decays (Snowmass 2013):

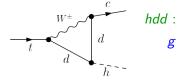
 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c H) &\sim & 3 \cdot 10^{-15} \end{array}$


Same suppression mechanism in all channels (CKM+GIM).

Standard Model expectations for the FCNC top decays (Snowmass 2013):

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c H) &\sim & 3 \cdot 10^{-15} \end{array}$

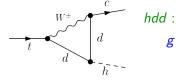
Same suppression mechanism in all channels (CKM+GIM).


Only for $t \rightarrow c H$ channel, GIM mechanism is not applicable (in one of the diagrams) due to Higgs coupling proportional to mass.

But the contribution of this diagram is still suppressed by $\frac{m_b}{M_W}$ (Higgs coupling)

Probably the simplest possible extension of the SM.

Decay channel $t \rightarrow c h$ is affected by modified Higgs couplings:


f: $g = g_{SM} \times (\sin(\beta - \alpha) - \tan\beta \cdot \cos(\beta - \alpha))$ possible enhancement at large tan β

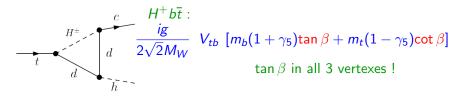
c

Probably the simplest possible extension of the SM.

Decay channel $t \rightarrow c h$ is affected by modified Higgs couplings:

 $g = g_{SM} \times (\sin(\beta - \alpha) - \tan\beta \cdot \cos(\beta - \alpha))$ possible enhancement at large tan β

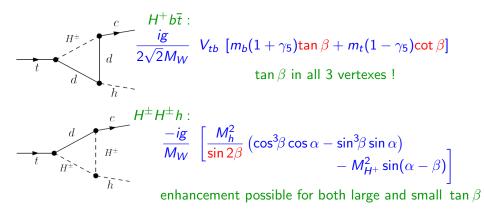
$$d \qquad hWW:$$


$$g = g_{SM} \times \sin(\beta - \alpha)$$
no enhancement possible

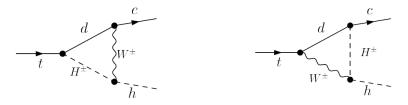
Two Higgs Doublet Model

New contributions to $t \to c h$ (as well as to $t \to c\gamma$, cZ, cg) from diagrams with H^{\pm} in the loop (instead of W^{\pm}).

In case of 2HDM(II) (as an example):



Two Higgs Doublet Model


New contributions to $t \to c h$ (as well as to $t \to c\gamma$, cZ, cg) from diagrams with H^{\pm} in the loop (instead of W^{\pm}).

In case of 2HDM(II) (as an example):

One also has to consider diagrams with both H^{\pm} and W^{\pm} :

In the "standard" 2HDM scenarios, loop contributions can be enhanced significantly. However, FCNC remain suppressed at the tree level due to assumed flavour diagonal Higgs couplings.

However, one can also consider "non standard" scenarios, as 2HDM(III) or "Top 2HDM", where one of Higgs doublets couple to top quark only, where tree level FCNC couplings are possible!...

Expected maximal branching rations for different scenarios Significant differences between different papers - overall limit ranges given

Model	$BR(t \to c h)$	$BR(t \! \rightarrow \! c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \rightarrow c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10^{-14}
2HDM	10^{-5} - 10^{-4}	10^{-9}	10^{-8}	10^{-10}

Expected maximal branching rations for different scenarios Significant differences between different papers - overall limit ranges given

Model	$BR(t \to c h)$	$BR(t \! \rightarrow \! c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \rightarrow c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10^{-14}
2HDM	$10^{-5} - 10^{-4}$	10^{-9}	10 ⁻⁸	10^{-10}
2HDM (FV)	$10^{-3} - 10^{-2}$	$10^{-6} - 10^{-7}$	10 ⁻⁴	10 ⁻⁶

Expected maximal branching rations for different scenarios Significant differences between different papers - overall limit ranges given

Model	$BR(t \!\rightarrow\! c h)$	$BR(t \rightarrow c \gamma)$	$BR(t \rightarrow c g)$	$BR(t \!\rightarrow\! c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10 ⁻¹⁴
2HDM	$10^{-5} - 10^{-4}$	10 ⁻⁹	10 ⁻⁸	10 ⁻¹⁰
2HDM (FV)	10 ⁻³ - 10 ⁻²	$10^{-6} - 10^{-7}$	10 ⁻⁴	10 ⁻⁶
MSSM	$10^{-5} - 10^{-4}$	$10^{-8} - 10^{-6}$	$10^{-7} - 10^{-4}$	$10^{-8} - 10^{-6}$
R SUSY	10 ⁻⁹ - 10 ⁻⁶	10 ⁻⁹ - 10 ⁻⁵	$10^{-5} - 10^{-3}$	10^{-6} - 10^{-4}

Expected maximal branching rations for different scenarios Significant differences between different papers - overall limit ranges given

Model	$ BR(t \to c h) $	$BR(t \rightarrow c \gamma)$	$BR(t \to c g)$	$BR(t \to c Z)$
SM	$3\cdot 10^{-15}$	$5\cdot 10^{-14}$	$5\cdot 10^{-12}$	10 ⁻¹⁴
2HDM	10 ⁻⁵ - 10 ⁻⁴	10 ⁻⁹	10 ⁻⁸	10^{-10}
2HDM (FV)	10 ⁻³ - 10 ⁻²	$10^{-6} - 10^{-7}$	10 ⁻⁴	10 ⁻⁶
MSSM	10^{-5} - 10^{-4}	10^{-8} - 10^{-6}	10 ⁻⁷ - 10 ⁻⁴	10^{-8} - 10^{-6}
R SUSY	10 ⁻⁹ - 10 ⁻⁶	10^{-9} - 10^{-5}	10 ⁻⁵ - 10 ⁻³	10^{-6} - 10^{-4}
Little Higgs	10 ⁻⁵	$1.3\cdot 10^{-7}$	$1.4 \cdot 10^{-2}$	$2.6\cdot 10^{-5}$
Quark Singlet	$4.1 \cdot 10^{-5}$	$7.5\cdot 10^{-9}$	$1.5\cdot 10^{-7}$	$1.1\cdot 10^{-4}$
Randal-Sundrum	10 ⁻⁴	10 ⁻⁹	10 ⁻¹⁰	10 ⁻³

Model expectations

Decay $t \rightarrow c h$ in 2HDM is an interesting scenario:


- large enhancement both on tree and loop level
- well constrained kinematics
- seems to be most difficult for LHC

Limits on top FCNC decays from LHC (Moriond 2015):

BR(t ightarrow qZ)	<	0.05%	(CMS)
$BR(t ightarrow c \gamma)$	<	0.18%	(CMS)
$BR(t ightarrow u\gamma)$	<	0.016%	(CMS)
BR(t ightarrow cg)	<	0.016%	(ATLAS)
BR(t ightarrow ug)	<	0.0031%	(ATLAS)
BR(t ightarrow ch)	<	0.56%	(CMS, 20 fb ⁻¹)
$BR(t \rightarrow ch)$	<	0.79%	(ATLAS, 25 fb ⁻¹)

Top FCNC Searches (cont.)

June 12, 2015

34 / 61

Model

Dedicated implementation of 2HDM(III) prepared by Florian Straub. Many thanks also due to Juergen Reuter and Wolfgang Kilian...

- Test configuration of the model:
 - $m_{h_1} = 125 \text{ GeV}$

• BR
$$(t
ightarrow ch_1) = 10^{-3}$$

• BR $(h \rightarrow b\bar{b}) = 100\%$

Generated samples at $\sqrt{s}{=}500~{\rm GeV}$

- $e^+e^- \longrightarrow t\overline{t}$ (2HDM/SM)
- $e^+e^- \longrightarrow ch_1\bar{t}, \ t\bar{c}h_1$ (2HDM)
- $e^+e^- \longrightarrow cb\bar{b}\bar{t}, \ t\bar{c}b\bar{b}$ (SM)

Assume that we can select high purity $t\bar{t}$ sample

 \Rightarrow main background to FCNC decays from standard decay channels

Top FCNC decays

All events generated with CIRCE1 spectra + ISR Only t, W and h defined to be unstable. No hadronization/decays. No generator-level cuts imposed.

WHIZARD

Very simplified detector description

- detector acceptance for leptons: $|\cos \theta_l| < 0.995$
- detector acceptance for jets: $|\cos \theta_i| < 0.975$
- jet energy smearing: $\sigma_E = \begin{cases} \frac{S}{\sqrt{E}} & \text{for } E < 100 \, GeV \\ \frac{S}{\sqrt{100 \, GeV}} & E > 100 \, GeV \end{cases}$

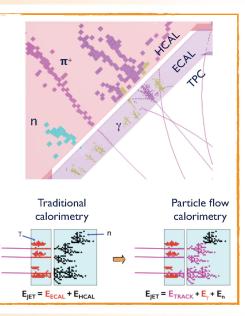
with S = 30%, 50% and 80% [GeV^{1/2}]

• *b* tagging (misstagging) efficiencies: (LCFI+ package)

Scenario	b	С	uds
Ideal	100%	0%	0%
Α	90%	30%	4%
В	80%	8%	0.8%
С	70%	2%	0.2%
D	60%	0.4%	0.08%

Pandora LC Event Reconstruction

Traditional calorimetric approach:

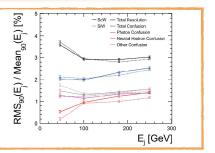

- Measure all components of jet energy in ECAL/HCAL
- Approximately 70% of energy measured in HCAL: $\sigma_{\rm E}/{\rm E} \approx 60\% / \sqrt{\rm E(GeV)}$

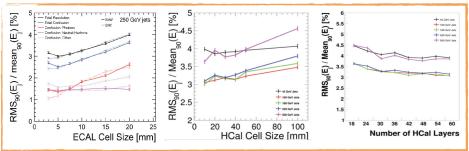
Particle Flow Calorimetry:

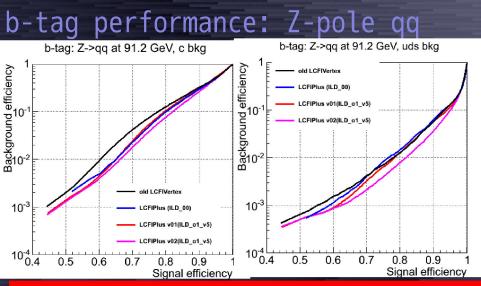
- Trace paths of individual particles through the detector.
- Charged particle momentum measured in tracker (essentially perfectly)
- Photon energies measured in ECAL: $\sigma_{\rm E}/{\rm E} < 20\% / \sqrt{{\rm E}({\rm GeV})}$
- Only neutral hadron energies (10% of jet energy) measured in HCAL.

Particle Flow Calorimetry requires:

- Fine-granularity calorimeters
- Sophisticated software algorithms






Pandora Detector Optimisation

- Physics motivation for particle flow calorimetry: Jet energy resolution: $\sigma_E/E < 3.5\%$
- Benchmark performance using jet energy resolution in Z decays to light quarks.
- Use jet energy resolution as figure of merit for extensive detector optimisation studies.
- Publication currently under construction.

old LCFIVertex -> LCFIPlus improvement seen in all region ILD_00 & ILD_o1_v5 give similar performance v02 is better than v01 in all region: use v02!

Taikan Suehara et al, ILC Tokusui Workshop, 17 Dec. 2013 page 5

$t\bar{t}$ final state selection

"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t

$t\bar{t}$ final state selection

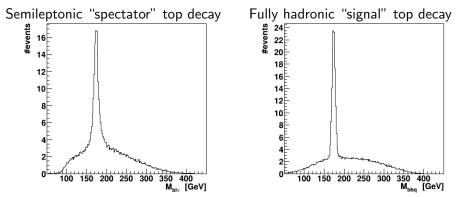
"Signal" top: $t \rightarrow ch_1 + \text{higgs decay to } b\bar{b} \Rightarrow 2 \ b \text{ tags}$ "Spectator" top: SM top decay $\Rightarrow 1 \ b \text{ tag}$

Considered final states (resulting from W^{\pm} decay channels):

- semileptonic: 4 jets + lepton + missing p_t
- fully hadronic: 6 jets, no leptons, no missing p_t

Event selection cutsfor $\sqrt{s} = 500$ GeV, $30\%/\sqrt{E}$ jet energy resolutionSemileptonic:Fully hadronic:

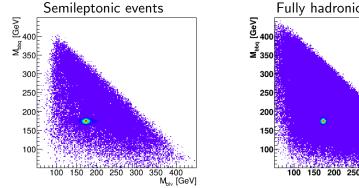
- Missing $p_t > 20$ GeV
- Single lepton with $p_t > 15 \text{ GeV}$
- 4 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged


- Missing $p_t < 10 \text{ GeV}$
- No lepton with $p_t > 10 \text{ GeV}$
- 6 jets with $p_t > 15 \text{ GeV}$
- 3 jets b-tagged

Top reconstruction

Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Semileptonic events (signal sample):



Top reconstruction

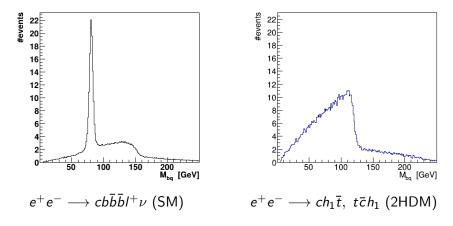
Try to group final state objects into two tops Check invariant mass distributions for all considered combinations

Proper combination can be easily identified

Fully hadronic events

400

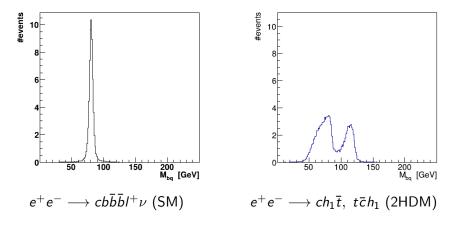
GeV]


300

Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

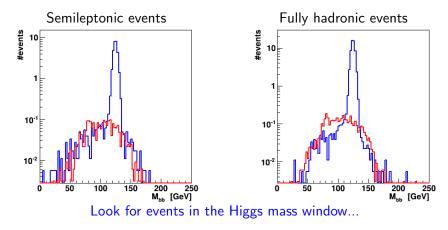
Invariant mass of two jets from "signal" top - all combinations



Cut based approach: W^{\pm} veto

Irreducible SM background can be suppressed by reconstructing second W

Invariant mass of two jets from "signal" top - best background fit



Signal selection

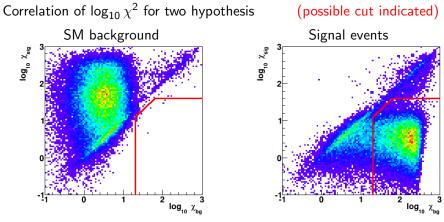
Cut based approach: Higgs candidate events W^{\pm} veto used: events with 73.5 < M_{ba} < 87.3 GeV rejected ($\pm 3\sigma$)

Invariant mass of two b-jets jets after W^{\pm} veto: signal vs background

Alternative approach - compare two hypothesis:

• background hypothesis

$$\chi^2_{bg} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bq} - m_W}{\sigma_{W,had}}\right)^2$$

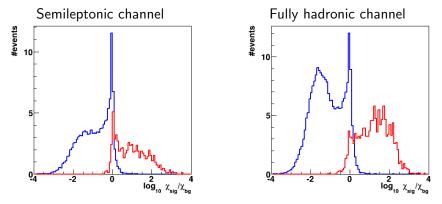

signal hypothesis

$$\chi^2_{sig} = \left(\frac{M_{bl\nu} - m_t}{\sigma_{t,lep}}\right)^2 + \left(\frac{M_{l\nu} - m_W}{\sigma_{W,lep}}\right)^2 + \left(\frac{M_{bbq} - m_t}{\sigma_{t,had}}\right)^2 + \left(\frac{M_{bb} - m_h}{\sigma_h}\right)^2$$

Independent search for best background and signal combinations

FINCULTY OF PHYSICS

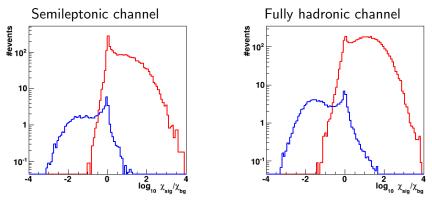
Hypothesis comparison



80% *b*-tagging efficiency (scenario B)

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background


Ideal *b*-tagging Very efficient background rejection possible

Signal selection

PACULTY OF PHYSICS

Hypothesis comparison

Difference of $\log_{10}\chi^2$ for two hypothesis: signal vs background

80% *b*-tagging efficiency (scenario B) Very efficient background rejection possible

Results

Expected events

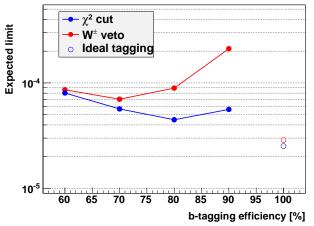
For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

Semileptonic	Ideal b-tagging		Scenario B	
	tīt (SM)	Signal	tīt (SM)	Signal
All	268'000	548	268'000	548
Single lepton + p_t	102'000	149	102'000	149
4 jets	75'700	122	75'700	122
3 b-tags	64.3	122	2'480	61.3
W veto	5.44	88.2	24.6	45.1
h mass window	0.88	81.5	3.5	39.3
$\chi^2~{ m cut}$	0.72	65.0	0.80	31.2
h mass window	0.38	62.2	0.71	29.6

Results

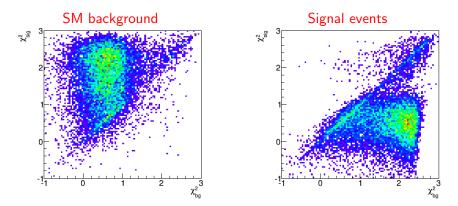
Expected events

For 500 fb^{-1} , assuming $BR(t \to ch) \times BR(h \to b\bar{b}) \approx 10^{-3}$ for signal

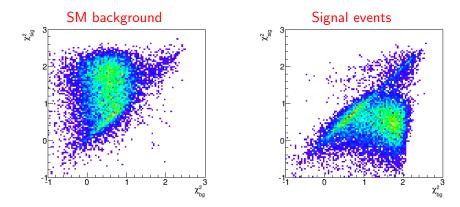

Fully hadronic	Ideal b-tagging		Scenario B	
	tīt (SM)	Signal	tīt (SM)	Signal
All	268'000	548	268'000	548
No leptons, no p_t	112'000	343	112'000	343
6 jets	73'300	236	73'300	236
3 b-tags	130.1	236	4'680	118
W veto	9.7	160	31.3	79.0
h mass window	1.48	152	3.48	70.8
$\chi^2~{ m cut}$	1.41	150	1.25	69.2
h mass window	0.68	143	0.89	65.4

Results

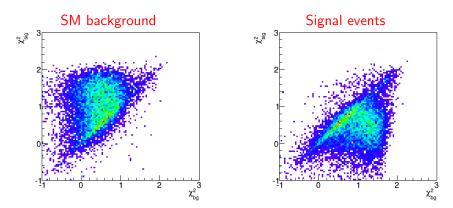
Expected limits


Limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ expected for 500 fb⁻¹ @ 500 GeV from combined analysis (semileptonic+hadronic channels)

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV

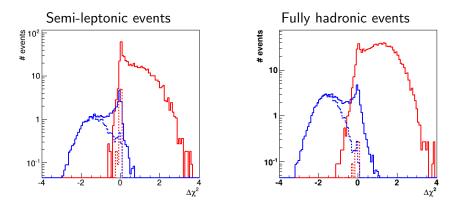

Jet energy resolution 30%

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV


Jet energy resolution 50%

Correlation of $\log_{10}\chi^2$ for two hypothesis for hadronic events @ 500 GeV

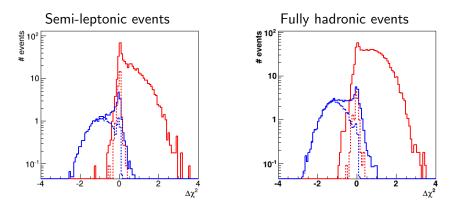
Jet energy resolution 80%



Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

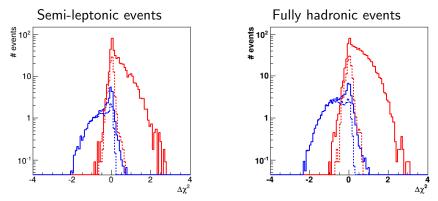
Jet energy resolution 30%



Jet energy resolution

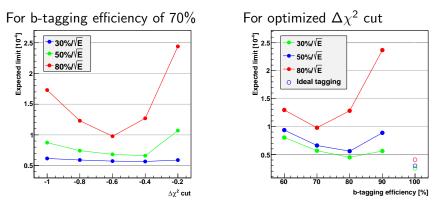
Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

Jet energy resolution 50%



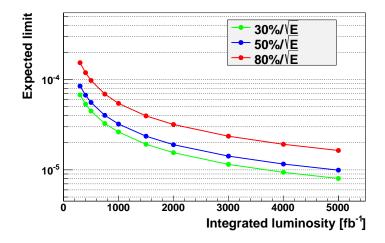
Jet energy resolution

Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts


Jet energy resolution 80%

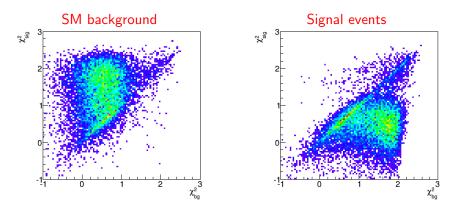
Signal - background separation still possible, but with decreasing efficiency

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ for 500 fb⁻¹ @ 500 GeV and different jet energy resolutions assumed


Worsening jet energy resolution \Rightarrow tighter cuts & b-tagging required

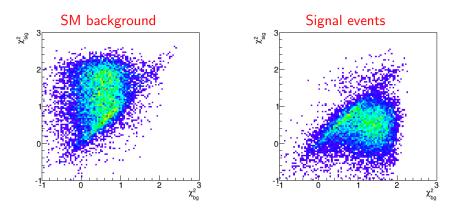
Jet energy resolution and luminosity

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$


Collision energy 500 GeV

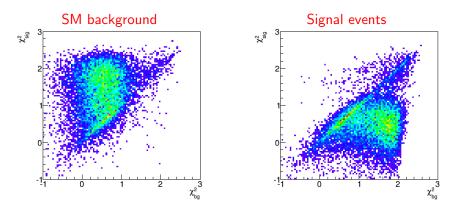
Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

Collision energy 500 GeV

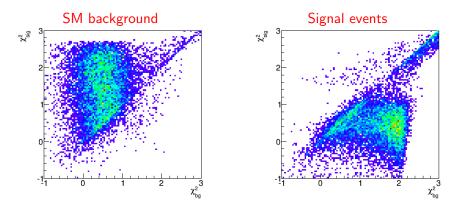


Collision energy

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

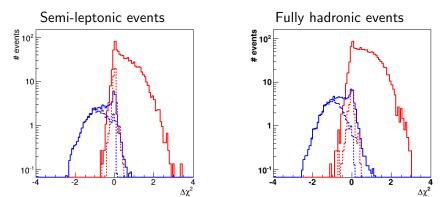

Collision energy 380 GeV

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging


Collision energy 500 GeV

Correlation of $\log_{10}\chi^2$ for hadronic events, 50% resolution, 70% b-tagging

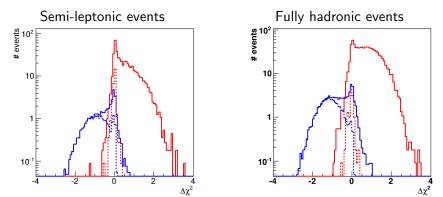
Collision energy 1000 GeV



Collision energy

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

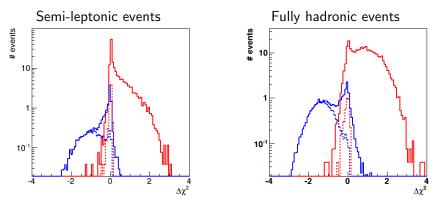
Collision energy 380 GeV



Collision energy

Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

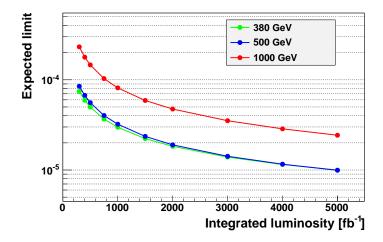
Collision energy 500 GeV



Collision energy

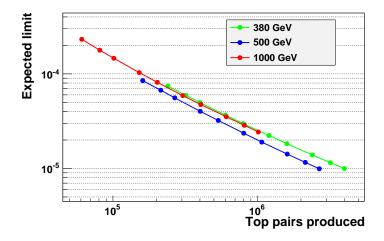
Difference of $\log_{10} \chi^2$ (signal - background) 50% resolution, 70% b-tagging Before (solid) and after (dashed) additional selection cuts

Collision energy 1000 GeV



Signal - background separation improves slightly for hadronic events. Visible loss of efficiency in semi-leptonic channel.

Collision energy and luminosity


Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Collision energy and statistics

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (τ , B...)
- very rough description of detector effects

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very rough description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angurlar distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta\chi^2$)

Sensitivity to $BR(t \rightarrow ch)$ estimated with parton level simulation based on very simplified approach:

- only $t\bar{t}$ background considered
- no effects of hadronization/decays (au, B...)
- very rough description of detector effects
- final state reconstruction and *b*-tagging not optimized
- angurlar distributions not taken into account
- polarization not taken into account
- selection cuts not optizmized (except for $\Delta\chi^2$)

Results are just estimates!

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

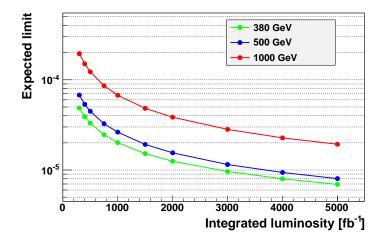
Similar sensitivity at different energies, measurement is statistics limitted.

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

Similar sensitivity at different energies, measurement is statistics limitted.

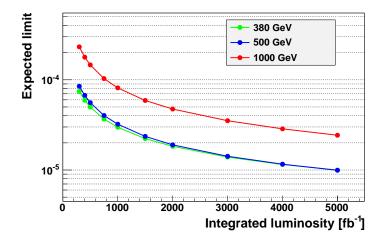
Selection efficiency strongly depends on the jet energy resolution At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$

Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$ from 10^{-4} to 10^{-5} depending on the energy, luminosity and detector parameters Limits scale with integrated luminosity approximately as $\mathcal{L}^{-0.8}$

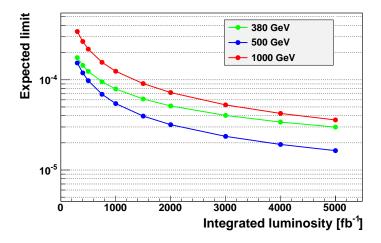

Similar sensitivity at different energies, measurement is statistics limitted.

Selection efficiency strongly depends on the jet energy resolution At 500 GeV, $30\%/\sqrt{E}$ require 25% less luminosity than $50\%/\sqrt{E}$, $80\%/\sqrt{E}$ require twice as much luminosity as $50\%/\sqrt{E}$

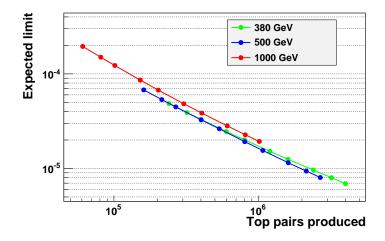
Flavour tagging preformance crucial for the analysis \Rightarrow possible benchmark for optimization of detector design



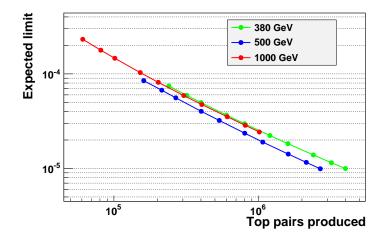
Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$



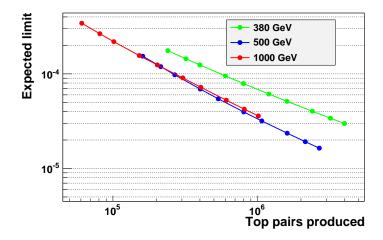
Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$



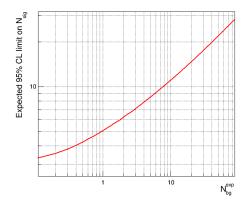
Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$



Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$



Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$


Expected limits on $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b})$

Expected limit

Expected 95% C.L. limit on the number of signal events calculated as an average limit from multiple "background only" experiments, with number of observed events generated from Poisson distribution.

