The 11th ICFA Seminar on Future Perspectives in High-Energy Physics

Institute of High Energy Physics, CAS, October 27-30, 2014

Aleksander Filip Żarnecki Seminarium Fizyki Wysokich Energii Warszawa, 5 grudnia 2014

The 11th ICFA Seminar on Future Perspectives in High-Energy Physics

Institute of High Energy Physics, CAS, October 27-30, 2014

Outline

- Introduction
- Experimental highlights
- Open questions
- Future prospects
- Global strategy
- Conclusions

Introduction

ECFA European Committee for Future Accelerators

Purpose of ICFA

ICFA was created to facilitate international collaboration in the construction and use of accelerators for high energy physics. It was created in 1976 by the International Union of Pure and Applied Physics. Its purposes, as stated in 1985, are as follows:

- To promote international collaboration in all phases of the construction and exploitation of very high energy accelerators.
- To organize regularly world-inclusive meetings for the exchange of information on future plans for regional facilities and for the formulation of advice on joint studies and uses.
- To organize workshops for the study of problems related to super high-energy accelerator complexes and their international exploitation and to foster research and development of necessary technology.

Nov. 20/21 2014, CERN

96th Plenary ECFA

http://www.fnal.gov/directorate/icfa/index.html

ICFA membership is (approximately) representative of particle physics activity in the different regions of the world: CERN member states (3), USA (3), Japan (2), Russia (2), Canada (1), China (1), Other Countries (3).

Members of ICFA are nominated by **designated authorities** in their regions.

The current membership includes the directors of CERN, Fermilab, IHEP (Beijing) and KEK, and the DESY and SLAC Particle Physics Directors.

Ex-officio: the Chair of IUPAP Commission 11, chair of ECFA

ECFA European Committee for Future Accelerators

ICFA Seminar

11th ICFA seminar at IHEP, Beijing, on 27-30 October 2014 http://icfa2014.ihep.ac.cn

The Seminar takes place <u>every three years</u> with the aim of bringing together <u>government officials</u> involved in strategic decisions for High Energy Physics (HEP), representatives of the major <u>funding agencies</u>, the <u>directors of major HEP laboratories</u>, and leading scientists from all of the regions of HEP activity.

ICFA Seminar 2014

159 participants from 24 countries

4 days, 14 sessions, 42 plenary talks

- experimental results (19)
- theory (7)
- future projects and R&D (9)
- regional reports and strategy (5)
- outreach and social impact (2)

United States of America 36 Japan 27 China 17 Switzerland 14 Germany 9 France 6 United Kingdom 6 ... Poland 3

. . .

The 11th ICFA Seminar on Future Perspective in High Energy Physics

The Daya Bay Experiment

- 6 reactor cores, 17.4 GW_{th}
- Relative measurement
 2 near sites, 1 far site
- Multiple detector modules
- Good cosmic shielding
 - 250 m.w.e @ near sites
 - 860 m.w.e @ far site
- Redundancy

<u>Daya Bay</u>

- 2011.12-2013.11 (621 days)
- Detailed and precise corrections for E non-linearity
- Continue to improve: reduced backgrounds and systematics
- Rate + Shape analysis for nGd events
- Rate analysis for nH events

C.Zhang, Neutrino14 & W.Wang, ICHEP14

Remarkable Improvements on θ₁₃

Y.F.Wang, Nufact2014

Jetter, Tau2014

Recent discoveries: $\alpha \rightarrow \beta$ oscillations in vacuum and matter

Data from various types of neutrino experiments: (a) solar, (b) long-baseline reactor, (c) atmospheric, (d) long-baseline accelerator, (e) short-baseline reactor, (f,g) long baseline accelerator (and, in part, atmospheric).

(a) KamLAND [plot]; (b) Borexino [plot], Homestake, Super-K, SAGE, GALLEX/GNO, SNO; (c) Super-K atmosph. [plot], MACRO, MINOS etc.; (d) T2K (plot), MINOS, K2K; (e) Daya Bay [plot], RENO, Double Chooz; (f) T2K [plot], MINOS; (g) OPERA [plot], Super-K atmospheric.

See next talks by Jung, Shiozawa, Cao

Energy (keV)

$\mu \rightarrow \tau$

Current 3v picture in just one slide (with 1-digit accuracy) Flavors = e $\mu \tau$

UNDERGROUND DARK MATTER LABORATORIES WORLDWIDE

Assumes Spin-Independ. Scattering i.e. scales as A²

New Indirect Detection Results

Pamela and AMS

IceCube/DeepCore

Lin, Yuan, Bi 1409.6248

BICEP2 at the South Pole

BICEP2 at the South Pole.

Polarization in BICEP2

BICEP2 revealed a faint but distinctive twist in the polarization pattern of the CMB. Here the lines represent polarization; the red and blue shading show the degree of the clockwise and counter-clockwise twist.

There is a $>3\sigma$ evidence!

muon's anomalous magnetic moment g_{μ} -2

muon (g_µ-2) anomaly

G.Isidori et al. PRD75, 115019

muon's anomalous magnetic moment

Numerical Lattice QCD

- Nowadays "lattice QCD" usually implies a numerical technique, in which the functional integral is integrated numerically on a computer.
- Big computers:
- Some compromises:

- finite human lifetime \Rightarrow Wick rotate to Euclidean time: $x^4 = ix^0$;
- finite memory \Rightarrow finite space volume & finite time extent;
- finite CPU power \Rightarrow light quarks until recently heavier than up and down.

$\pi...\Omega$: BMW, MILC, PACS-CS, QCDSF; ETM (2+1+1); η-η': RBC, UKQCD, Hadron Spectrum (ω); D, B: Fermilab, HPQCD, Mohler&Woloshyn

PDG α_s **Summary**

data full PDF $B_{s}^{0}\rightarrow\mu^{*}\mu^{*}$

semileptonic bkg

Significance:

4.3o

5.9

101804

3)

(201

PRI

--- peaking bkg

5.7 5.8

muu (GeV)

LHC – Standard Model Deepest Tests

‡ Fermilab

July 2012: discovery of a new particle.

With the data taken 2011, and $\sim 5 \text{ fb}^{-1}$ of data taken during 2012, the CMS and ATLAS experiments clearly discover the new particle with $\geq 5 \sigma$ sigificance

 Driven by decays to boson pairs: γγ, ZZ, WW

Focus since summer 2012:

- Study of the properties of the new particle
- Search for decays into fermion pairs
 - First evidence from Tevatron in 2012

Mass measurement.

- Measured in high resolution channels $H o \gamma\gamma$ and $H o 4\ell$
- Careful calibration of electromagnetic calorimeters and muon momentum scale

 Precise mass measurement is an important input to couplings measurements

 \star E.g. $\Delta m_H = 0.2$ GeV shifts prediction for BR $(H \rightarrow ZZ)$ by 2.5%

Decays to fermions.

 More challenging to observe than decays to bosons, but important to understand coupling of Higgs to SM particles

 $H \rightarrow \tau \tau$

$H \rightarrow b\bar{b}$

Important channel to constrain total width due to large BR

Tevatron $\mu_{bb} = 1.6 \pm 0.7$

CMS

 $\mu_{\tau\tau} = 0.8 \pm 0.3$ $\mu_{bb} = 1.0 \pm 0.5$ 2.1 σ (2.3 σ exp) σmeas σsM **ATLAS** $\mu_{\tau\tau} = 1.4 \pm 0.4$ $4.5 \sigma (3.5 \sigma \exp)$ $\mu_{bb} = 0.5 \pm 0.4$ 1.4 σ (2.6 σ exp)

Coupling measurements from LHC and Tevatron.

Common couplings scaling factor for all vector bosons (κ_V) and all fermions (κ_f)

Fair agreement with SM predictions

 $H \rightarrow \gamma \gamma$ has sensitivity to relative sign of κ_V and κ_f through interference of W and t in the loop

Measurements from ATLAS and CMS have been superseeded by updated measurements

No Hints of New Physics in Run 1

95% CL Limits on Masses of Exotic Phenomena in TeV

ab

9

8. Summary Particle Physics Activity in Asia

Open questions

Ш

-TRA

Without inclusion of loop effects now the SM would have been ruled out! $M_W = 80.404 \pm 0.030$ GeV (mea-

sured), 80.376GeV(theory)

 $m_t = 172.5 \pm 2.3$ GeV (measured) 172.9 GeV (theory)

SM rocks! LOOP Level!

October 28, 2014. ICFA-seminar on future perspectives in High Energy Physics (Beijing).

Statement number 1:

"In the present state of physical science, therefore, a question of extreme interest arises: Is there any principle on which **an absolute thermometric scale** can be founded?"

Statement number 2:

"There is nothing new to be discovered in physics now, All that remains is **more and more precise measurement**."

2014: of the Higgs and top properties!

The Particle Physics Primary Challenge

- Where are the particles beyond the standard model?
- What is dark matter?
- Neutrinos.....more to learn and more surprises?
- What is the cosmos telling us?
- What do we do next to prepare for the future?

Peeping through the Higgs window!

October 28, 2014. ICFA-seminar on future perspectives in High Energy Physics (Beijing).

How well do we need to measure the couplings?

Supersymmetry

- Want to disentangle various possible extensions (SUSY, composite Higgs, ...) of the SM, and their parameters
- Requires %-level accuracy in measurements of couplings of SM-like Higgs

ILC 250+550 LumiUP

Composite Higgs

Future prospects

Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

- # enabling a total integrated luminosity of **3000 fb**⁻¹
- # implying an integrated luminosity of **250-300 fb⁻¹ per year**,
- # design for $\mu \sim 140$ (~ 200) (\rightarrow peak luminosity of 5 (7) 10³⁴ cm⁻² s⁻¹)
- # design equipment for 'ultimate' performance of 7.5 10³⁴ cm⁻² s⁻¹ and 4000 fb⁻¹

➔ Ten times the luminosity reach of first 10 years of LHC operation

HL-LHC magnet specs

		Туре	Material	Field /Gradient (T)/(T/m)	Aperture (mm)	Length (m)	Units (-)
	Q1,Q3 Q2	Single aperture	Nb₃Sn	(12.1) 140	150	8 6.7	40
	D1	Single aperture	Nb-Ti	5.2	150	6.7	6
00	D2	Twin aperture	Nb-Ti	3.55.0	95105	710	6
	Q4	Twin aperture	Nb-Ti	(5.9) 120	90	4.2	6
00	DS 11T	Twin aperture	Nb₃Sn	10.8	60	11	40

200 magnets

HL-LHC Upgrade Ingredients: Crab Cavities

Crab cavities:

Noise fi

- Reduces the effect of geometrical reduction factor
- Independent for each IP

Good Example of International Collaboration

Baseline design of HL-LHC Interaction Region (Bordry)

Implementation plan

- PDR: Oct 2014 ; Ext. Cost & Schedule Review in March 2015;
- ► TDR: OCT 2015; TDR-v2 : 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018-2019)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 from: IT, CC, other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-24
- Tough but based on LHC experience feasible

CMS Phase II Upgrade

The precision couplings measurements at HL-LHC in the 2—10% range can be reduced at the ILC by an order of magnitude, while providing a model independent determination of Higgs partial widths

The ILC Accelerator Concept

- Electron and Positron Sources (e-, e+)
- Damping Ring (DR)
- Ring to ML beam transport (RTML)
- Main Linac (ML) : SCRF Technology
- Beam Delivery System (BDS)

Production yield: 94 % at > 35+/-20% Average gradient: 37.1 MV/m > R&D goal of 35 MV/m reached (2012)

2nd pass yield - established vendors, standard process

CLIC Layout at 3 TeV

Cryomodule System Tests

DESY: FLASH

- 1.25 GeV linac (TESLA-Like tech.)
- ILC-like bunch trains:
- 600 ms, 9 mA beam (2009);
 800 ms 4.5 mA (2012)
- ◆ RF-cryomodule string with beam →
 PXFEL1 operational at FLASH

KEK: STF/STF2

- \$1-Global: completed (2010)
- Quantum Beam Accelerator (Inverse Llaser Compton): 6.7 mA, 1 ms
 ← Demonstrated
- CM1 test with beam (2014 ~2013)
- STF-COI: Facility to demonstrate CM assembly/test in near future

FNAL: ASTA

(Advanced Superconducting Test Accelerator)

- CM1 test complete
- CM2 operation (2013)
- CM2 with beam (soon)

FEL and advanced linacs with SCRF modules

US and EU (industrial) production and test capacity. Perfectly placed for start of ILC construction end of this decade.

ILC Recent progress of KEK-ATF

ATF2: Final focus Test beamline

Goal-1: Develop final focus system for ILC

→ 37 nm vertical beam size at IP

Goal-2: Develop beam position stabilization in a few nm

ightarrow Study of Intra-train feedback has been started.

- Small beam tuning (All members; IHEP, KNU, KEK, Tokyo, Hiroshima,...)
- Studies on multipole field error and Wake field (IHEP, KEK,...)
- Low-Q IP BPMs (KNU) High resolution BPM electronics (KNU, KEK)

ATF2: Stabilisation Experiment

#1 Question for the World HEP Community

- Large Hadron Collider or
 - Last Hadron Collider?

This was an old question. It was raised again and again after the demise of the SSC, e.g., Snowmass 1996, Snowmass 2001. But after Snowmass 2005, this question was put aside as our community decided to go full steam ahead for the ILC.

Why the Renewed Interest?

- A trigger was the discovery of the Higgs. As its mass is low, a circular *e+e* collider can serve as a Higgs factory. But the ring size must be big in order to combat synchrotron radiation. Such a big ring will be ideal for a future *pp* collider.
- CERN
 - Has established a 20-year plan for the LHC and HL-LHC, can now afford to study a post-LHC machine
 - CLIC is on the table. However, an energy frontier big circular pp collider is no doubt the ultimate goal.
- China
 - A "new kid on the block" for large size circular colliders, bringing in much needed fresh blood
 - Encouraged by the recent achievements in neutrino physics, powered by the nation's economic strength, eager to take on "big things"
 - > Team is young, but enthusiastic and optimistic about the future of our field
- US
 - P5 report:

"Recommendation 24: Participate in global conceptual design studies and critical path R&D for future very high-energy proton-proton colliders. Continue to play a leadership role in superconducting magnet technology focused on the <u>dual goals of increasing performance and decreasing costs</u>."

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

pp-collider (*FCC-hh*)
 → defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

(courtesy of Peter Lee, Applied SC Center of FSU)35

FCC study milestones

Kick-off Meeting of the Future Circular Colliders Design Study 12 - 15 February 2014, University of Geneva / Switzerland 341 registered participants

Hoch@cern.

photo b

The CEPC-SppC Kick-off Meeting in Beijing

- The Chinese CEPC+SPPC Study Group kick-off meeting took place Sept. 13-14 in Beijing
- Participation by over 120 physicists from 19 domestic institutes
- Domestic accelerator, theoretical and experimental physicists were organized

CEPC-SppC

CEPC is an 240 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70 TeV or higher pp collider **SppC**, to study the new physics beyond the Standard Model.

CepC/SppC study (CAS-IHEP) e⁺e⁻ collisions; then *pp* collisions

10

15

CEPC-SppC Project Timeline (dream)

20 15	20 20	20 25	20 30	20 35
Pre-studies (2013-2015)	R&D Engineering Design (2016-2020)	Construction (2021-2027)	Data taking (2028-2035)	
11-10-	But in the second	148 III II Van	at a function of the second of the	S'nerry

1st Milestone: pre-CDR (by the end of 2014)

 \rightarrow R&D funding request to Chinese government in 2015 (China's 13th Five-Year Plan 2016-2020)

SppC

CEPC

20	20		20	
20	30		40	
R&D	Engineering Design	Construction	Data taking	
(2014-2030)	(2030-2035)	(2035-2042)	(2042-2055)	
		Section 11	man halm	

5

Evolution of Fermilab Neutrino Experiments

The next generation LBL experiment w/ HK

- ~1MW (or higher) J-PARC MR +T2K beamline
- New huge detector: 1Mt Water Ch. Hyper-Kamiokande@Kamioka
- Physics goals: CPV (w/ J-PARC v beam), Mass hierarchy w/ <u>Atm</u> v, proton decay, etc., find something unexpected!
- Communities support HK at high priority
 - HEP: One of two highest priority large projects (other is ILC)
 - · Cosmic: endorses HK at high priority
 - HK project plan is submitted to the master plan for large scale projects in SCJ

Requirement : joint proposal of HK and J-PARC upgrade

Liquid Ar TPC Activity in Japan

Experiment@LBNF and Hyper-Kamiokande

	Experiment@LBNF	Hyper-Kamiokande
Beam Energy	120 GeV (60 – 120 GeV)	30 GeV
Beam Power	≥ 1.2 MW	≥ 750 kW
Beam Configuration	On-axis, Wide-band	Off-axis (2.5°), Narrow-band
Baseline	1300 km (default)	300 km
Detector Technology	Liquid Ar	Water Cherenkov
Far detector F.V.	35 kt (LBNE) → 40 kt (P5)	560 kt
Near Detector	Yes	Yes
Estimated Cost (to be re-evaluated)	~\$1.5B* (Full Costing* for beamline, near and far detectors)	~\$800M (only for far detector)
Proposal Status	DOE CD1 approval (in the process of reformulation)	In discussion w/ MEXT (See M. Shiozawa's talk)

(* includes: project management, contingency and escalation)

These two proposed experiments are complementary to each other in many aspects. However, the science goals of each experiment must be compelling on its own. And in my opinion they are.

Office of

Science

LBNE and HyperK Sensitivities to CPV

Exposure of 600 kt-MW-yr (~ 40 kt x 1.2MW x 12.5 yrs) >3σ CPV sensitivity for 75% of δ >5σ CPV sensitivity for 56% of δ

Exposure of 7.5 MW x 10⁷ s (~ 750 kW x 10 yr) w/ 560 kt F.V. allows:

 $>3\sigma$ CPV sensitivity for 76% of δ

 $>5\sigma$ CPV sensitivity for 58% of δ

ICFA Seminar, Oct. 2014 C. K. Jung

The JUNO Experiment

 Jiangmen Underground Neutrino Observatory, a multiple-purpose neutrino experiment, approved in Feb. 2013. ~ 300 M\$.

- 20 kton LS detector
- **3% energy resolution**
- 700 m underground
- Rich physics possibilities
 - Reactor neutrino for Mass hierarchy and precision measurement of oscillation parameters
 - ⇒ Supernovae neutrino
 - ➡ Geoneutrino
 - Solar neutrino
 - ⇒ Atmospheric neutrino
 - ⇒ Exotic searches

Talk by Y.F. Wang at ICFA seminar 2008, Neutel 2011; by J. Cao at Nutel 2009, NuTurn 2012; Paper by L. Zhan, Y.F. Wang, J. Cao, L.J. Wen, PRD78:111103, 2008; PRD79:073007,2009

Physics Reach

Thanks to a large θ_{13}

- Mass hierarchy
- Precision measurement of mixing parameters
- Supernova neutrinos
- Geoneutrinos
- Solar & atmospheric neutrinos
- Sterile neutrinos

	Current	JUNO		
Δm_{12}^2	4%	0.6%		
Δm_{23}^2	5%	0.6%		
$\sin^2\theta_{12}$	5%	0.7%		
$\sin^2\theta_{23}$	10%	N/A		
$\sin^2\theta_{13}$	6% → 3%	~ 15%		

For 6 years, mass hierarchy can be determined at 4σ level, if $\Delta m^2_{\mu\mu}$ can be determined at 1% level

Detector size: 20kt Energy resolution: 3%/√E Thermal power: 36 GW

5. Underground Project in India

INO: India-based Neutrino Observatory	REBRIT RAL REBRIT RAL TAMIL NADU
	PHYSICS WITH ATMOSPHERIC NEUTRINOS
50 kton magnetiz module(s) w 30,000 channe <u>tob Cavern</u> <u>tob Cavern</u>	 * Reconfirm neutrino oscillations from distortion in L/E * Measure Δm²₃₁ and sin²2θ₂₃ * Determine the neutrino mass hierarchy * Determine the deviation of θ₂₃ from 45° and its octant * Other (new) physics (sterile neutrinos, NSI, CPTV, LIV, Long range forces)

✤ Very high energy neutrinos and muons

U.S.-based EICs – the Machines

MEIC (JLab)

eRHIC (BNL)

First polarized electron-proton/light ions collider in the world \diamond

- First electron-nucleus (various species) collider in the world \diamond
- **Both cases make use of existing facilities** (H. Montgomery, Oct 29) \diamond

Heavy Flavor Physics

Livingston plot for luminosity:

HEP Cosmic Frontier Program Experiments

				#		
				Collaborators	# Institutions	utions #
Experiment	Location	Description	Current Status	(# US, HEP)	(# US, нер)	Countries
Baryon Oscillation Spectrosopic Survey	APO in New	dark energy stage III		230 (150 US, 40		
(BOSS)	Mexico	(spectroscopic)	operations ended in FY14	HEP)	(22 US, 8 HEP)	7
		dark energy stage III			25 (13 US, 9	
Dark Energy Survey (DES)	CTIO in Chile	(imaging)	operations started Sept. 2013	300	HEP)	6
Large Synoptic Survey Telescope (LSST) -	Cerro Pachon in	dark energy stage IV		232 (200 US, 134	53 (41 US, 16	
Dark Energy Science Collaboration (DESC)	Chile	(imaging)	science studies, planning	HEP)	HEP)	3
Large Synoptic Survey Telescope (LSST) -	Cerro Pachon in	dark energy stage IV	CD3a approved; FY14 Fabrication	142 (111 US, 111	17 (11 US, 11	_
LSSTcam Project	Chile	(imaging)	start; CD2 review Nov. 2014	HEP)	HEP)	2
Dark Energy Spectroscopic Instrument	KPNO IN AZ	dark energy stage IV	CDU approved Sept 2012; CD1	180 (95 US, 72	42 (23 US, 18	10
(DESI)	(plan)	(spectroscopic)	review Sept 2014	HEP)	HEP)	13
(ADMY III)	Liniv Washington	dark matter avien coarch	operating	24 (20 LIS 17 LIED)		2
DM-G1: Chicagoland Observatory for	Univ washington	udik matter - axion search	operating	24 (20 03, 17 HEP)	7 (0 03, 5 HEP)	2
Underground Particle Physics (COUPP-60).	SNOI ah in					
now PICO	Canada	dark matter - WIMP search	operating	60 (26 US, 8 HFP)	14 (6 US. 1 HFP)	5
			operating.	122 (66 US, 12	26 (12 US. 3	U U
DM-G1: DarkSide-50	LNGS in Italy	dark matter - WIMP search	operating	HEP)	HEP)	7
	SURF in South			, 102 (86 US, 64	, 18 (15 US. 13	
Large Underground Xenon (LUX)	Dakota	dark matter - WIMP search	operating	HEP)	HEP)	3
Super Cryogenic Dark Matter Search	Soudan in				20 (17 US, 7	
(SuperCDMS-Soudan)	Minnesota	dark matter - WIMP search	operating	83 (72 US, 44 HEP)	HEP)	3
			Selected July 2014; Moving to			
DM-G2: ADMX-G2	Univ Washington	dark matter - axion search	fabrication phase in FY15	31 (29 US, 20 HEP)	8 (7 US, 4 HEP)	2
	SNOLab in		Selected July 2014; planning CD1		20 (17 US, 7	
DM-G2: SuperCDMS-SNOLAB	Canada	dark matter - WIMP search	in FY15	94 (83 US, 54 HEP)	HEP)	4
	SURF in South		Selected July 2014; planning CD1	154 (118 US, 107	28 (18 US, 17	
DM-G2: LZ	Dakota	dark matter - WIMP search	review in Jan. 2015	HEP)	HEP)	3
Very Energetic Radiation Imaging					20 (15 US, 5	_
Telescope Array System (VERITAS)	FLWO in AZ	gamma-ray survey	operating	92 (74 US, 32 HEP)	HEP)	4
				463 (51 US, 12	100 (20 US, 5	10
Pierre Auger Observatory	Argentina	cosmic-ray	operating	HEP)	HEP)	18
Fermi Gamma-ray Space Telescope (FGST)	space based		lune 2008 loungh, operating	319 (157 US, 73	49 (14 US, 3	0
Large Area Telescope (LAT)	space-based (on	gamma-ray survey	June 2008 launch; operating	пср)	пср)	9
Alpha Magnetic Spectrometer (AMS 02)	space-based (On	cosmic-ray	May 2011 Jaunch: operating	600		16
	1.35)		regional report	000	31 (16 US 2	10
High Altitude Water Cherenkov (HAWC)	Mexico	gamma-ray survey	Operations started in 2014	111 (54 US, 8 HEP)	HEP)	23
		- , ,		, , , ,		

Science Drivers & Research Frontiers

Science drivers identify the scientific motivation, while the Research Frontiers provide a useful categorization of experimental techniques

Future (large, global) HEP Facilities

- My compilation of large facilities with a global scope
- LHC, incl. HL-LHC
- Very High Energy Hadron Collider
 - include ee and ep options
- Electron-Positron Collider
 - ILC, CLIC
- LBNF: long baseline neutrino facility

Global Strategy

- Regional strategies in Particle Physics
 - Japan
 - Europe: update approved by CERN Council
 - US: P5
 - US P5 Strategy: Science Drivers
 - Higgs boson
 - Neutrino mass
 - Dark matter
 - Cosmic acceleration
 - Explore the unknown
 - → Facilities: LHC, LBNF, ILC, ...

Japan, February 2012

- if there is a Higgs → ILC
- If theta_13 is large

 large neutrino experiment

Europe, May 2013

- LHC incl. HL-LHC
- Accelerator R&D (CLIC, high field magnets)
- ILC in Japan
- participation in long-baseline neutrino experiment(s)

- Different flavors in different regions, but large overlap!
- Emerging global strategy

Setting the Future Stage...it will be Global

- Europe is looking to lead the FCC
- China is looking to lead at the CEPC-SPPC
- Japan is looking to lead the ILC

• The US focus on neutrinos now and R&D to help FCC/SPPC

- Plan: Start together and develop technology together
- Plan: Reduce the cost per country?....more countries helps but technology breakthroughs will be cost driver

Global HEP Strategy

ICFA statement in February, 2014 at DESY

ICFA encouraged the two studies (FCC and CEPC-SPPC) to work as close together as possible, with the following statement:

ICFA supports studies of energy frontier circular colliders and encourages global coordination.

ICFA statement in July, 2014 at Valencia

ICFA endorses the particle physics strategic plans produced in Europe, Asia and the United States and the globally aligned priorities contained therein. Here, ICFA reaffirms its support of the ILC, which is in a mature state of technical development and offers unprecedented opportunities for precision studies of the newly discovered Higgs boson. In addition, ICFA continues to encourage international studies of circular colliders, with an ultimate goal of proton-proton collisions at energies much higher than those of the LHC.

Site specific studies

Establish a site-specific Civil Engineering Design - map the (site independent) TDR baseline onto the preferred site - assuming "Kitakami" as a primary candidate

ILC preferred site - Kitakami

30km

al

- MEXT has requested \$0.5M for investigatory study which was approved on Dec 24, 2013.
 - Not a fund request by a researcher, but by MEXT.
 - Approved by the ministry of finance and then by an official cabinet decision.
 - Will be doubled next year (i.e. ~1M\$)
- An expert committee was established under MEXT
 - 13 members (could increase)
 - A few particle physicists included
 - No 'ILC proponents'
 - Kickoff meeting held on May 8, 2014
 - Report to be completed by FY2015 (i.e. end of March 2016)
- The outcome is critically important for the ILC

We are not well coordinated as a field...

It is vital to have competition. Wiser to have collaboration and coordination.

We have to collaborate closely for different studies. And start to compete when projects start...

 # We need to have global vision, in particular regarding human resources.
 Accelerator physicists are rare species!..

Discussion

We do need more than one project for the future. Some competition is vital...

CEPC vs ILC:

- We absolutly need both of them!
- Very much complementary.
- We should try to convince our governments...
- In the past we talked about ILC with 2 experiments.
 What about 2 accelerators with 1 detector each?
 Abandoning push-pull would be welcomed by many people...

(Yifang Wang, director of IHEP)

HEP funding per researcher per year comparable with other branches of science

Aviability of funding depends on being able to convince society (voters)

Laboratories need to produce ideas for the public each week

Politicians are easy to be confused...

ICFA should play more active role to set the strategy...

Accelerators in Europe

A vibrant activity in the construction of accelerator based facilities:

- XFEL, SWISSFEL
- ESS
- FAIR
- Synchrotron Light Accelerators Upgrades
-

It is fundamental to retain the skills in the field and to increase the networking among the European Research infrastructures

It is an asset in the exploration of New Physics

Despite their impact on science, most accelerators that have been built are used for other purposes

- About 30,000 accelerators are in use world wide
 - Sales of accelerators > \$ 2 B /yr and growing
 - Accelerators touch over \$ 500B/yr in products
 - Major Impact on our economy, health, and well being

Our message needs to be

- Basic research like particle physics and astronomy is not a luxury
- In fact it is key to our future economic competitiveness in a globalising, knowledge based economy

Why?

- Because
 - It attracts young people into science and trains them for the 21st century
 - It drives technological innovation

Future?

The future will be exicting

The future will & must be (even more) global

"Those who ignore history are condemned to repeat it."

Next ICFA Seminar

Vancouver, fall 2017

ICFA web page: http://www.fnal.gov/directorate/icfa/

Combined Higgs results (ILC)

See talk of Kerstin Tackmann yesterday (Higgs – decays and properties)

Fully model-independent

LHC-like fits, assuming SM decay modes only