Probing Dark Matter with ILC

Aleksander Filip Zarnecki

Faculty of Physics, University of Warsaw

on behalf of the ILC International Development Team Physics and Detector Working Group

The XXVIII International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY/2021)

Probing Dark Matter with ILC

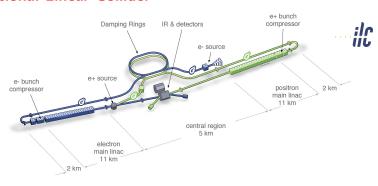
Dark Matter

Many hints for existence of Dark Matter (DM), but its nature is unknown. Many possible scenarios, wide range of masses and couplings to consider.

ILC is an unique machine offering many options for DM searches:

Tomohiko Tanabe @ LCWS'2021

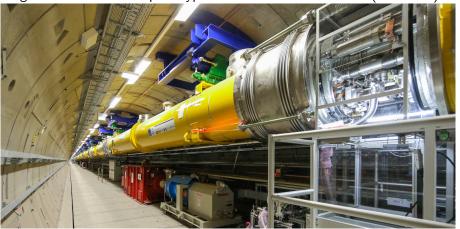
Probing Dark Matter with ILC


Outline

- Machine and Experiments
- Collider searches
 - Higgs measurements
 - Mono-photon events
- Non-collider experiments
- 4 Conclusions
 - References and links

International Linear Collider

Technical Design (TDR) completed in 2013

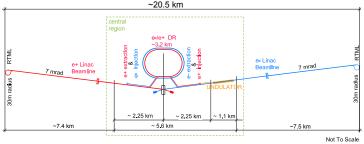

arXiv:1306.6328

- superconducting accelerating cavities
- 250 500 GeV c.m.s. energy (baseline), 1 TeV upgrade possible
- footprint 31 km
- polarisation for both e⁻ and e⁺ (80%/30%)

E-XFEL first X-ray laser flashes in May 2017

Largest ever accelerator prototype: ILC-250 arm in 1:7 scale (17.5 GeV)

All construction issues verified. Full industrialization of cavity production.

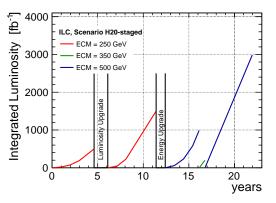


ILC-250

The discovery of a Higgs Boson with a mass of 125~GeV opened the possibility of reducing ILC cost by starting at a centre-of-mass energy of 250~GeV with the possibility of future upgrades to 500~GeV or even 1~TeV.

arXiv:1711.00568

"Higgs-factory" layout 250 GeV optimal for Higgs production



arXiv:1903.01629

International Linear Collider

Baseline running scenario for staged ILC construction

arXiv:1903.01629

Total integrated luminosities same as in original H-20 proposal for ILC-500!

Polarisation

The unique feature of the ILC is the possibility of having both electron and positron beams polarised! This is crucial for many precision measurements as well as BSM searches. Four independent measurements instead of one:

- increase accuracy of precision measurements
- remove ambiguity in many BSM studies
- reduce sensitivity to systematic effects

Integrated luminosity planned with different polarisation settings [fb⁻¹]

\sqrt{s}	$\operatorname{sgn}(P(e^-), P(e^+))$			
	(-,+)	(+,-)	(-,-)	(+,+)
250 GeV	900	900	100	100
350 GeV	135	45	10	10
500 GeV	1600	1600	400	400

arXiv:1903.01629

ILC Preparatory Laboratory (Pre-Lab) proposal

In August 2020 the International Committee for Future Accelerators (ICFA) setup the ILC International Development Team (IDT).

The Team is hosted by the High Energy Accelerator Research Organization (KEK) in Japan and its mandate is to make preparations for the ILC Preparatory Laboratory (Pre-Lab) in Japan, as the first step of the preparation phase of the ILC to be constructed as an international project.

In June 2021 the Pre-lab proposal was submitted to the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

The proposal and the supporting documents are now under review by the MEXT advisory panel.

⇒ we do hope for the positive response...

Pre-Lab will allow to finalise the machine design, clarify all formal and organisational issues and prepare for the final decision on the ILC construction

Experiments

Detector Requirement

"Particle Flow" concept:

High calorimeter granularity

⇒ single particle reconstruction/ID

Precise momentum measurement


- ⇒ best energy for charged particles
 - ⇒ dominates jet energy resolution

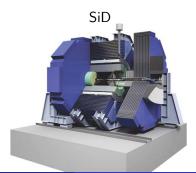
High precision vertex detector

⇒ very efficient flavour tagging

Instrumentation down to smallest angles

⇒ hermecity, missing energy tagging

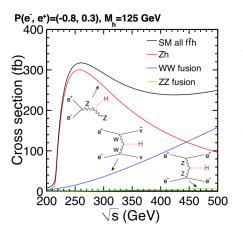
Experiments

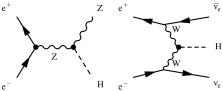


Detector Requirements

- Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$
- Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1~{\rm GeV}}{p~\sin^{3/2}\Theta}$
- Jet energy resolution: $\sigma_E/E = 3 4\%$ (for highest jet energies)
- Hermecity: $\Theta_{min} = 5 \text{ mrad}$

Two detailed ILC detector concepts:

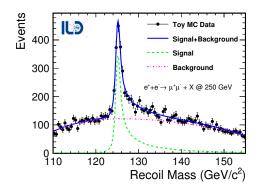




First ILC running stage will clearly be focused on Higgs measurements

Production cross section

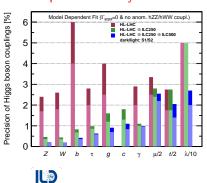
At 250 GeV dominated by Higgs-strahlung (ZH production)

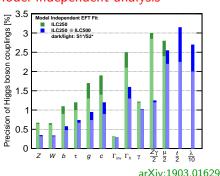

but we still profit from combining two production channels

⇒ model independent analysis

Event reconstruction

In the ZH production channel (dominating below 450 GeV) we can use "Z-tagging" for unbiased selection of Higgs production events


We avoid any dependence on the Higgs decay channel!


Higgs couplings

ILC sensitivity to the different Higgs boson couplings compared with the HL-LHC projections

Model-dependent analysis

Model-independent analysis

Sub-percent level precision already at the first energy stage

Invisible decays

In Higgs-portal models, new scalars fields ϕ coupling to dark matter particles can mix with the SM Higgs field h resulting in two mass eigenstates:

$$\left(\begin{array}{c}h_1\\h_2\end{array}\right) = \left(\begin{array}{cc}\cos\alpha & \sin\alpha\\-\sin\alpha & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\\phi\end{array}\right)$$

If $\alpha \ll$ 1, h_1 is SM-like (the observed 125 GeV state), but it can also decay invisibly via ϕ component (BR $\sim \sin^2 \alpha$)

⇒ search for invisible Higgs decays

Invisible decays

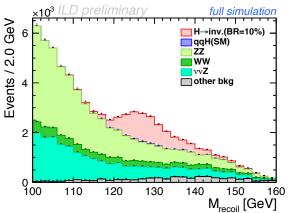
In Higgs-portal models, new scalars fields ϕ coupling to dark matter particles can mix with the SM Higgs field h resulting in two mass eigenstates:

$$\left(\begin{array}{c}h_1\\h_2\end{array}\right) = \left(\begin{array}{cc}\cos\alpha & \sin\alpha\\-\sin\alpha & \cos\alpha\end{array}\right) \left(\begin{array}{c}h\\\phi\end{array}\right)$$

If $\alpha \ll$ 1, h_1 is SM-like (the observed 125 GeV state), but it can also decay invisibly via ϕ component (BR $\sim \sin^2 \alpha$)

⇒ search for invisible Higgs decays

If h_2 is also light, it can be produced in e^+e^- collisions in the same way as the SM-like Higgs boson.


⇒ search for additional scalar states

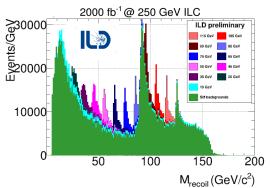
Visible in recoil mass distribution even, if invisible decays dominate.

Invisible decays

High sensitivity to invisible Higgs boson decays with recoil mass technique

Expected 95% C.L. limit for 2 ab⁻¹ collected at 250 GeV ILC: 0.23% a factor of 10 better than the HL-LHC prospect. arXiv:2002.12048

Search for new scalars


Many BSM models introduce extended Higgs sectors.

New scalars could be light, if their couplings to SM particles are small.

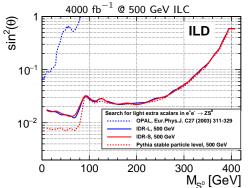
Search for production of new scalars:

arXiv:1903.01629

arXiv:2005.06265

Search independent on the scalar decay: $e^+e^- \rightarrow Z S^0 \rightarrow \mu^+\mu^- + X$

Search for new scalars

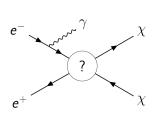

Many BSM models introduce extended Higgs sectors.

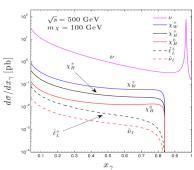
New scalars could be light, if their couplings to SM particles are small.

Search for production of new scalars:

arXiv:1903.01629

arXiv:2005.06265

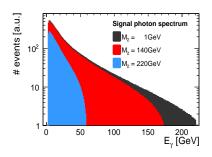


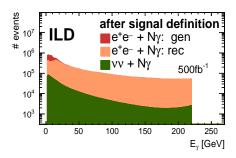

Search independent on the scalar decay: $e^+e^- o Z \ S^0 o \mu^+\mu^- + X$

Mono-photon signature

The mono-photon signature is considered to be the most general way to look for DM particle production in future e⁺e⁻ colliders.

DM can be pair produced in the e⁺e⁻ collisions via exchange of a new mediator particle, which couples to both electrons (SM) and DM states

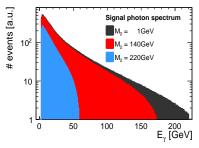

This process can be detected, if additional hard photon radiation from the initial state is observed in the detector...

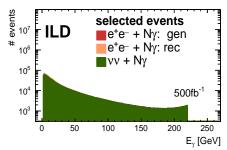


Heavy mediator study (full simulation) arXiv:2001.03011Scenarios with heavy mediator and coupling values $\mathcal{O}(1)$ (EFT limit)

Signature: single photon in an "empty" detector

Main backgrounds: radiative Bhabha and neutrino pair-production

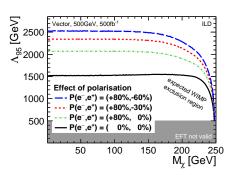


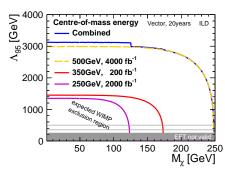


Heavy mediator study (full simulation) arXiv:2001.03011 Scenarios with heavy mediator and coupling values $\mathcal{O}(1)$ (EFT limit)

Signature: single photon in an "empty" detector

Main backgrounds: radiative Bhabha and neutrino pair-production

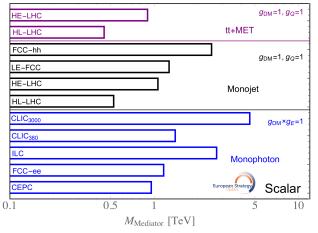

"Irreducible" background from radiative neutrino pair-production events $e^+e^- \rightarrow \nu\nu + N\gamma$ dominates after selection and bg suppression cuts



Heavy mediator study (full simulation) arXiv:2001.03011 Scenarios with heavy mediator and coupling values $\mathcal{O}(1)$ (EFT limit)

Different polarisation combinations help to reduce the systematics

⇒ significant improvement of mass scale limits


Sensitivity to the BSM mass scales up to $\Lambda \sim 3 \text{ TeV}$

$$\Lambda^2 = \frac{M_Y^2}{|g_{eeY}g_{YYY}|}$$

Dark Matter searches

Comparison of extracted mediator mass limits

ILC mass reach comparable with that of FCC-hh!!!

Light mediator study

arXiv:2107.11194

DM production via light mediator exchange still not excluded for scenarios with very small mediator couplings to SM, $\Gamma_{SM} \ll \Gamma_{tot}$

"Experimental-like" approach

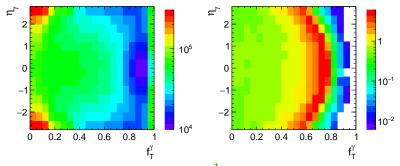
⇒ focus on cross section limits as a function of mediator mass and width

Dedicated simulation procedure for $\operatorname{WHIZARD}$, with all "detectable" photons generated on Matrix Element level, matched with soft ISR.

⇒ J. Kalinowski et al., Eur. Phys. J. C 80 (2020) 634, arXiv:2004.14486

Detector response simulated in the Delphes framework (fast simulation).

More details given yesterday in Dark Matter and Astroparticle Physics session: "Sensitivity of future e^+e^- colliders to processes of dark matter production with light mediator exchange", presented by Jan Kalinowski, contribution #280



Background vs Signal distributions

arXiv:2107 11194

For mono-photon events, two variables fully describe event kinematics

 \Rightarrow use 2D distribution of (p_T^{γ}, η) to constrain DM production Signal Background

ILC 500 GeV (-80%/+30%) 1600 fb⁻¹ $M_Y = 400$ GeV, $\Gamma/M = 0.03$

Signal normalised to unpolarised DM pair-production cross section of 1 fb

Cross section limits

for radiative events (with tagged photon)

ILC @ 500 GeV

Vector Mediator with and without systematics

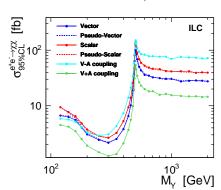
$$\Gamma/M = 0.03$$

$$\Gamma/M = 0.5$$

$$10 \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \end{array} \\ \begin{array}{c} \end{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array}{c} \end{array} \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\$$

Systematic effects reduced for on-shell production of narrow mediator

Cross section limits for total DM production cross section


Corrected for probability of hard photon tagging! see backup slides

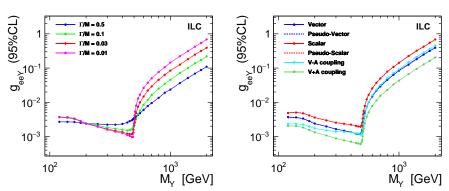
Combined limits for ILC @ 500 GeV, H-20 scenario

Vector mediator

10² ILC ILC ILC INM = 0.5 ILC INM = 0.01 I

Mediator with $\Gamma/m = 3\%$

Radiation suppressed for narrow mediator with $M_Y \sim \sqrt{s} \Rightarrow$ weaker limits



Coupling limits with systematic uncertainties

Combined coupling limits for assumed mass and width of the mediator.

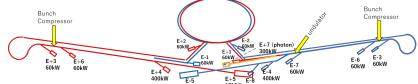
Vector mediator

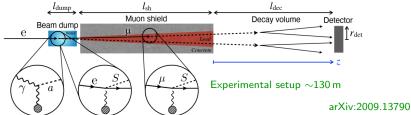
$$\Gamma/M = 0.03$$

Almost uniform sensitivity to mediator coupling g_{eeY} up to kinematic limit.

ILC beam dumps

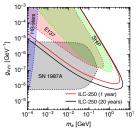
Electron and positron beams, with extreme intensities $(\sim 10^{22} e^{\pm}/y)$


Many beam dump points planned around the ILC facility


ILC beam dumps

Electron and positron beams, with extreme intensities $(\sim 10^{22} e^{\pm}/y)$ Many beam dump points planned around the ILC facility

K.Yokoya @ LCWS'2021

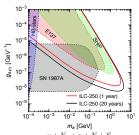

Concept of main beam dump experiments searching for axion-like particles or new scalars:

Main beam dump experiments

Looking for SM decays of new exotic particles produced in the beam dump arXiv:2009.13790

Axion-like particle model

looking for
$$a \rightarrow \gamma \gamma$$


$$\mathcal{L}
i - rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u} + rac{1}{2} (\partial_{\mu} a)^2 - rac{1}{2} m_a^2 a^2$$

An order of magnitude better sensitivity than other experiments

Main beam dump experiments

Looking for SM decays of new exotic particles produced in the beam dump arXiv:2009.13790

Axion-like particle model

looking for
$$a \rightarrow \gamma \gamma$$

$$\mathcal{L} \ni -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u} + rac{1}{2} (\partial_{\mu} a)^2 - rac{1}{2} m_a^2 a^2$$

An order of magnitude better sensitivity than other experiments

Light scalar coupled to charged leptons

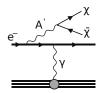
$$\mathcal{L} \ni \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - \sum_{l=e,\mu,\tau} g_l S \bar{l} l$$

Model A: $g_I \propto m_I$

Sensitivity down to very small couplings

Non-collider experiments

Main beam dump experiments


M.Perelstein @ LCWS'2021

Scenarios with Dark Photon (A') and Dirac fermion DM (χ)

$$\mathcal{L}\ni -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}+\frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu}-\frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}+\bar{\chi}(\imath D-m_{\chi})\chi$$

Resonant (e⁺e⁻ \rightarrow A'), associated prod. (e⁺e⁻ \rightarrow A' γ) or radiation (e[±] N \rightarrow e[±] N A') \Rightarrow collimated stream of DM particles from A' decay (A' $\rightarrow \chi \chi$)

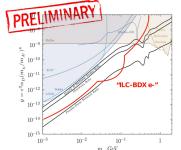
 \Rightarrow looking for elastic χ interactions in the detector

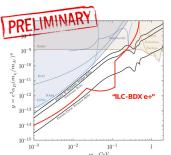
Approach used in SLAC Beam Dump Experiment E137

arXiv:1406.2698

Non-collider experiments

Main beam dump experiments


M.Perelstein @ LCWS'2021


Scenarios with Dark Photon (A') and Dirac fermion DM (χ)

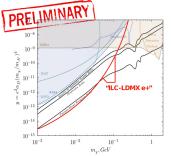
$$\mathcal{L}\ni -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu}+\frac{1}{2}m_{A'}^2A'_{\mu}A'^{\mu}-\frac{\epsilon}{2}F'_{\mu\nu}F^{\mu\nu}+\bar{\chi}(\imath D-m_{\chi})\chi$$

Resonant (e⁺e⁻ \rightarrow A'), associated prod. (e⁺e⁻ \rightarrow A' γ) or radiation (e[±] N \rightarrow e[±] N A') \Rightarrow collimated stream of DM particles from A' decay (A' $\rightarrow \chi \chi$)

 \Rightarrow looking for elastic χ interactions in the detector

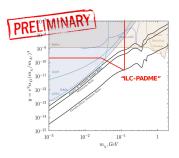
Huge improvement in sensitivity for $m_{A^{'}}\lesssim 1$ GeV thanks to much higher statistics

Non-collider experiments


Experiments with extracted beams

M.Perelstein @ LCWS'2021

Searching for Dark Photons with extracted positron beams


$$e^+e^- \rightarrow A' \gamma$$

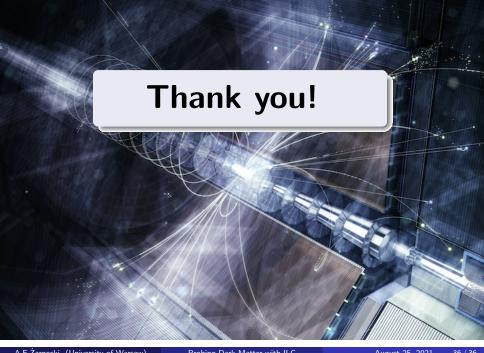
Missing energy reconstruction in thick active target

LDMX for SLAC: arXiv:1807 05884

Thin target, missing mass reconstruction in dedicated detector

PADME @ Frascati: arXiv:1910.00764

Conclusions


Probing Dark Matter with ILC

ILC will offer many complementary options for DM searches.

- Different scenarios can be constrained via precision Higgs studies.
- Clean environment and kinematic constraints of e^+e^- collisions result in high sensitivity to different DM production scenarios.
- Sensitivity extends to the TeV mass scales, order of magnitude higher than the collision energy.

The ILC will also offer highest energy electron and positron beams, with unprecedented intensities, for beam dump and extracted beam exp.

Fixed-target experiments offer many interesting opportunities for dark sector searches in the low mass domain and other science goals.

References

Recent documents

Proposal for the ILC Preparatory Laboratory (Pre-lab)	arXiv:2106.00602
 ILC Study Questions for Snowmass 2021 	arXiv:2007.03650
 International Large Detector: Interim Design Report 	arXiv:2003.01116
Tests of the Standard Model at the International Linear Collider	arXiv:1908.11299

European Strategy submissions

urop	bean Strategy submissions		
•	The International Collider. A Global Project	submission,	arXiv:1903.01629
•	The International Collider. An European perspective		submission
•	The ILD Detector at the ILC	submission,	arXiv:1912.04601
ther	reports		
•	The role of positron polarization for the inital 250 GeV stage of the International Linear Collider		arXiv:1801.02840
•	The International Linear Collider Machine Staging Report 20:	17	arXiv:1711.00568
•	Physics Case for the 250 GeV Stage of the International Line	ar Collider	arXiv:1710.07621
•	The Potential of the ILC for Discovering New Particles		arXiv:1702.05333
•	The International Linear Collider Technical Design Report		

Volume 4: Detectors

Volume 3.II: Accelerator Baseline Design

• The International Linear Collider Technical Design Report

arXiv:1306.6328

arXiv:1306 6329

Links

General

- ILC International Development Team https://linearcollider.org/
- ILC Newsline http://newsline.linearcollider.org/
 ILC Newsline http://newsline.linearcollider.org/
- ILC IDT Working Group 3 (Physics and Detectors) https://linearcollider.org/team/wg3/also including many links to subgroups, indico sites etc.
- ILC Simulation Resources for Snowmass 2021 http://ilcsnowmass.org/including links to past tutorials and large sets of generated events samples
- SiD detector concept for ILC

http://silicondetector.org

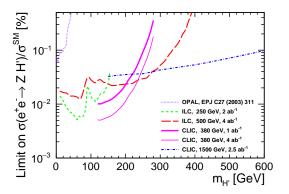
ILD detector concept for ILC

https://confluence.desy.de/display/ILD/ILD

Software tools

- repository
- ILC beam spectra files for
- repository
- wiki
- ILCgen model documentation
- LCIO package at github
- Delphes2LCIO documentation https://github.com/iLCSoft/LCIO/tree/master/examples/cpp/delphes2lcio

https://whizard.hepforge.org/ https://whizard.hepforge.org/circe_files/ILC/ https://github.com/delphes/delphes https://cp3.irmp.ucl.ac.be/projects/delphes https://github.com/iLCSoft/ILCDelphes https://github.com/iLCSoft/LCIO



Higgs measurements

Many BSM models introduce extended Higgs sectors.

New scalars could be light, if their couplings to SM particles are small.

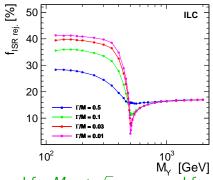
Search for production of new scalars (independent on the scalar decay):

Comparison with CLIC limits assuming 100% invisible scalar decays EPJP 136 (2021) 2, 160

Simplified DM model

Dark matter particles, X_i , couple to the SM particles via an mediator, Y_j .

Each simplified scenario is characterized by one dark matter candidate and one mediator from the set listed below:

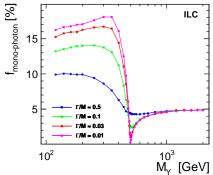

	particle	mass	spin	charge	self-conjugate	type
DM	X_R	m_{X_R}	0	0	yes	real scalar
	$X_{\mathcal{C}}$	m_{X_C}	0	0	no	complex scalar
	X_{M}	m_{X_M}	$\frac{1}{2}$	0	yes	Majorana fermion
	X_M X_D	m_{X_D}	$\frac{\overline{1}}{2}$	0	no	Dirac fermion
	X_V	m_{X_V}	1	0	yes	real vector
mediator	Y_R	m_{Y_R}	0	0	yes	real scalar
	Y_V	m_{Y_C}	1	0	yes	real vector
	T_C	m_{T_C}	0	1	no	charged scalar

ISR rejection efficiency

Fraction of events generated by Whizard removed by ISR rejection procedure (ISR photons emitted in the phase-space region covered by ME)

ILC @ 500 GeV

ISR emission enhanced for $M_Y < \sqrt{s}$, suppressed for $M_Y \sim \sqrt{s}$



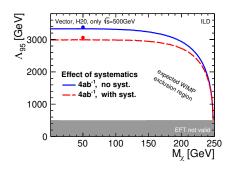
Tagging efficiency

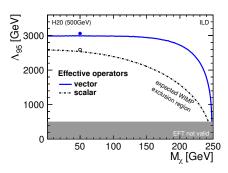
Detectable hard photon emitted only in a fraction of signal event

$$\sigma\left(\mathbf{e^{+}e^{-}} \rightarrow \chi \; \chi \; \gamma_{_{\mathrm{tag}}}\right) \; = \; f_{\mathrm{mono-photon}} \cdot \sigma\left(\mathbf{e^{+}e^{-}} \rightarrow \chi \; \chi \; (\gamma) \; \right)$$

ILC @ 500 GeV

Emission strongly suppressed for narrow mediator with $M_Y \sim \sqrt{s}$


Mono-photon events


arXiv:2001.03011 arXiv:2107.11194

Effective mass scale limits:

$$\Lambda^2 = \frac{M_Y^2}{|g_{eeY}g_{\chi\chi Y}|}$$

Limits from fast simulation (points) vs limits from full simulation (lines)

Very good agreement between full simulation and fast simulation results! ⇒ reliable extrapolation to low mediator mass domain...