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Resolved photon(s) interactions v +v — X + Q + Q

Overlaying events
(high intensity of photon-beams in the low-energy part of the spectrum)
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Photon-photon spectrum: CompAZ
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Signal: HDECAY, PYTHIA
Background: program by G. Jikia
Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)

Jets: Durham algorithm with ., = 0.02

1) Assumed bb-tagging and mistagging
2) Using ZVTOP-B-Hadron-Tagger
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Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA
Background: program by G. Jikia
Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)
Jets: Durham algorithm with y..,: = 0.02

1) Assumed bb-tagging and mistagging efficiencies: ey, = 70%, cc = 3.5%
2) Using ZVTOP-B-Hadron-Tagger

Eyis > 90 GeV

Nijets = 2, 3

|P:|/Evis < 0.1

|cosf;| < 0.75 for each jet
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2-jet events yy- cc(Q)

Number of v + v — ¢ + ¢ events per 1 year of collider running
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Earlier assumed: ey, = 70% e = 3.5%
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Neutrinos from semileptonic decays of D- and B-mesons.







Wcorr = \/Wgec _l_ 2PT(EU'L'S + PT)
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WTW ™ — 4 jets event selection:

balanced transverse momentum:
PT/ET < 0.1

4 hadronic jets reconstructed
(Durham algorithm)

#events

cut on jet angle cos ;.: < 0.95
to preserve good mass resolution

two W= reconstructed
with probability Py > 0.001

My Ty
Pw = H 2 2 \2 2 12
Wi, Wo (mjj — MW) + My, L'y,

= selection efficiency between 20% for and 16% for (W, = 200400 GeV )
probability for both W to decay into hadrons is ~47%

= invariant mass resolution: I' ~ 6.5 — 13 GeV (Breit-Wigner like)



Z7Z —lljj selection (I = e, u):

balanced transverse momentum:
PT/ET < 0.1

2 leptons (e* or p*) + 2 hadronic
jets reconstructed

too large background in 4-jet
channel

#events

cut on lepton and jet angle
cosBjer < 0.95

leptons and jets reconstruct into
two Z° with probability Pz > 0.001

—- selection efficiency about 5% (BR(ZZ — qql"17) =~ 9.4%)

= Invariant mass resolution: I' ~ 5.5 — 7.5 GeV (Breit-Wigner like)
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Invariant mass resolution for selected W W ™ and ZZ events
IS parametrized as a function of W, .

Measured invariant mass distribution can be then described by convolution of:

Analytical luminosity Spectra CompAZz
Cross section formula for signal + background + interf.

Invariant mass resolution

mass spectra can be calculated for any /s.. and M} without MC simulation

[ simulation
m, =300 GeV

[ simulation
m, =180 GeV

# events

Parameterization:
= m, =300 GeV

# events

Parameterization:
= m,=180 GeV

- no Higgs - no Higgs
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Average statistical precision expected after 1 year of PC running

Two parameter fit
to invariant mass distribution
for WT™W ™~ and ZZ events

305 GeV
362 GeV
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Sensitive to possible “new physics”
only up to M;, ~ 280 GeV

For higher Higgs masses I, is

little sensitive to contribution of new
heavy charged particles !

@~~ fit increases assuming SM branching ratios
the error only slightly “new physics” modeled by SM-like 2HDM (ll) with
M+ = 800 GeV



Average statistical precision expected after 1 year of PC running

Two parameter fit
to invariant mass distribution
for WT™W ™~ and ZZ events

305 GeV
362 GeV

Fﬂyf}/ and ¢’y’y | 418 GeV

500 GeV

Phase measurement significantly
Improves our sensitivity to new
heavy charged particles at large
Higgs boson masses

assuming SM branching ratios

Example: heavy charged Higgs boson of the SM-like 2HDM(II) with M ;;+ = 800 GeV



Two parameter fit to W W~ and ZZ invariant mass distribution; 1 PC year.
Expected statistical error contours (1o) in ¢~ - Iy, , for M; = 300 GeV:

H" (2HDM)
— D @Q=-7)
U@+
— L(Q=-

SM-like 2HDM (Il) =
Mp+ = 800 GeV

separation not possible without phase measurement !



Comparison of I',, results from different analyses

Our plans: g
ur plans. 3 h - bb h - WW, ZZ [NZK]
—— [IS-R] —— 305 GeV

h — bb up to 160 GeV * [NZK] 362 Gev

210 GeV
418 GeV

H — bbin MSSM | 500 GeV
CPofhinh — ZZ
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