Higgs studies at the TESLA Photon Collider

P. Nieżurawski, A. F. Żarnecki, M. Krawczyk

Faculty of Physics Warsaw University

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$

 $J_z = 0$

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$ $J_z = 0$

"Hard" background:

Process: $\gamma + \gamma \rightarrow h \rightarrow b + \overline{b}$ b $J_z = 0$ þ b,W,t, ... b γ $\sigma \propto Q_q^4$ -C $\bar{\mathbf{h}}$ $\sigma^{LO}(|J_z|=2) \gg \sigma^{LO}(J_z=0)$

Other background

Resolved photon(s) interactions $\gamma + \gamma \rightarrow X + Q + \bar{Q}$

Other background

- Resolved photon(s) interactions $\gamma + \gamma \rightarrow X + Q + \bar{Q}$
- Overlaying events (high intensity of photon-beams in the low-energy part of the spectrum)

LO cross section for massless fermions

$$\sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) = 0$$

LO cross section for massless fermions

$$\sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) = 0$$

LO cross section for massive fermions

$$S_F^{\mu} = P_F^{\mu} + \mathcal{O}(\frac{m_F}{E_F})$$

$$\implies \sigma(J_z = 2) \propto \frac{\alpha^2}{s}$$
$$\sigma(J_z = 0) \propto \frac{m_F^2}{s} \frac{\alpha^2}{s}$$

NLO cross section for massless fermions

$$\implies \sigma \propto \frac{\alpha^2 \alpha_s}{s}$$
$$\frac{d\sigma}{dE_g} (J_z = 2) \propto \frac{1}{E_g}$$
$$\sigma (J_z = 0) \propto E_g^3$$

NLO cross section for massive fermions

$\gamma + \gamma \to F + \bar{F}$

NLO cross section for massless fermions

$$\implies \sigma \propto \frac{\alpha^2 \alpha_s}{s}$$
$$\frac{d\sigma}{dE_g} (J_z = 2) \propto \frac{1}{E_g}$$
$$\sigma (J_z = 0) \propto E_g^3$$

NLO cross section for massive fermions

Photon-photon spectrum: CompAZ

Higgs at the Photon Collider

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

1) Assumed bb-tagging and mistagging efficiencies: \$\varepsilon_{bb} = 70\%\$, \$\varepsilon_{cc} = 3.5\%\$
 2) Using ZVTOP-B-Hadron-Tagger

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger

• $E_{vis} > 90 \text{ GeV}$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation)

Jets: Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

- 1) Assumed bb-tagging and mistagging
 2) Using ZVTOP-B-Hadron-Tagger

- $|P_z|/E_{vis} < 0.1$

Photon-photon spectrum: CompAZ

Signal: HDECAY, PYTHIA Background: program by G. Jikia Fragmentation: Lund in PYTHIA

Detector performance: SIMDET (parametric simulation) **Jets:** Durham algorithm with $y_{cut} = 0.02$

Selection of $b\bar{b}$ events:

- 1) Assumed bb-tagging and mistagging efficiencies: ε_{bb} = 70%, ε_{cc} = 3.5%
 2) Using ZVTOP-B-Hadron-Tagger
- $N_{jets} = 2, 3$
- $|P_z|/E_{vis} < 0.1$
- $|\cos \theta_i| < 0.75$ for each jet

ZVTOP-B-Hadron-Tagger

Number of $\gamma + \gamma \rightarrow b + \overline{b}$ events per 1 year of collider running

ZVTOP-B-Hadron-Tagger

Number of $\gamma + \gamma \rightarrow c + \bar{c}$ events per 1 year of collider running

ZVTOP-B-Hadron-Tagger

S_{-}	$\#(\gamma\gamma \rightarrow$	$b\overline{b})$
\overline{B}	$\#(\gamma\gamma \rightarrow$	$c\bar{c})$

ZVTOP-B-Hadron-Tagger

Results

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

Consecutive approaches:

• LO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}$. (1.7%)

Results

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

Consecutive approaches:

- LO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}$. (1.7%)
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%)

Results

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

Consecutive approaches:

- LO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}$. (1.7%)
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%)

 NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. B-tagging algorithm. (1.8%)

Neutrinos from semileptonic decays of *D*- and *B*-mesons.

Neutrinos from semileptonic decays of *D*- and *B*-mesons.

Neutrinos from semileptonic decays of *D*- and *B*-mesons.

Neutrinos from semileptonic decays of *D*- and *B*-mesons.

$$W_{corr} \equiv \sqrt{W_{rec}^2 + 2P_T(E_{vis} + P_T)}$$

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%) - with W_{rec}

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%) - with W_{rec} (1.7%) - with W_{corr}

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%) - with W_{rec} (1.7%) - with W_{corr}
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$.
 B-tagging algorithm. (1.8%) - with W_{rec}

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%) - with W_{rec} (1.7%) - with W_{corr}
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. B-tagging algorithm. (1.8%) - with W_{rec} (1.6%) - with W_{corr}

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) \operatorname{Br}(h \to b\overline{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}}$$

- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. (1.9%) - with W_{rec} (1.7%) - with W_{corr}
- NLO cross section for $\gamma + \gamma \rightarrow Q\bar{Q}(g)$. B-tagging algorithm. (1.8%) - with W_{rec} (1.6%) - with W_{corr}

Plans: m_h up to 160 GeV, . . .

$W^+W^- \rightarrow 4 \, jets$ event selection:

balanced transverse momentum: $P_T/E_T < 0.1$

$W^+W^- \rightarrow 4 \, jets$ event selection:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets reconstructed (Durham algorithm)

– p.9/15

$W^+W^- \rightarrow 4 \, jets$ event selection:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets reconstructed (Durham algorithm)
- cut on jet angle $\cos \theta_{jet} < 0.95$ to preserve good mass resolution

$W^+W^- \rightarrow 4 \, jets$ event selection:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets reconstructed (Durham algorithm)
- cut on jet angle $\cos \theta_{jet} < 0.95$ to preserve good mass resolution
- two W^{\pm} reconstructed with probability $P_W > 0.001$

$$P_W = \prod_{W_1, W_2} \frac{M_W^2 \Gamma_W^2}{\left(m_{jj}^2 - M_W^2\right)^2 + M_W^2 \Gamma_W^2}$$

$W^+W^- \rightarrow 4 \, jets$ event selection:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets reconstructed (Durham algorithm)
- cut on jet angle $\cos \theta_{jet} < 0.95$ to preserve good mass resolution
- two W^{\pm} reconstructed with probability $P_W > 0.001$

$$P_W = \prod_{W_1, W_2} \frac{M_W^2 \Gamma_W^2}{\left(m_{jj}^2 - M_W^2\right)^2 + M_W^2 \Gamma_W^2}$$

 \Rightarrow selection efficiency between 20% for and 16% for ($W_{\gamma\gamma}$ = 200–400 GeV) probability for both W^{\pm} to decay into hadrons is ~47%

$W^+W^- \rightarrow 4 jets$ event selection:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 4 hadronic jets reconstructed (Durham algorithm)
- cut on jet angle $\cos \theta_{jet} < 0.95$ to preserve good mass resolution
- two W^{\pm} reconstructed with probability $P_W > 0.001$

$$P_W = \prod_{W_1, W_2} \frac{M_W^2 \Gamma_W^2}{\left(m_{jj}^2 - M_W^2\right)^2 + M_W^2 \Gamma_W^2}$$

 \Rightarrow selection efficiency between 20% for and 16% for ($W_{\gamma\gamma}$ = 200–400 GeV) probability for both W^{\pm} to decay into hadrons is ~47%

 \Rightarrow invariant mass resolution: $\Gamma \sim 6.5 - 13$ GeV (Breit-Wigner like)

- p.9/15

$\gamma\gamma \rightarrow ZZ$

$ZZ \rightarrow lljj$ selection $(l = e, \mu)$:

- balanced transverse momentum: $P_T/E_T < 0.1$
- 2 leptons (e^{\pm} or μ^{\pm}) + 2 hadronic jets reconstructed too large background in 4-jet channel
- cut on lepton and jet angle $\cos \theta_{jet} < 0.95$
- leptons and jets reconstruct into two Z° with probability $P_Z > 0.001$

 \Rightarrow selection efficiency about 5% ($BR(ZZ \rightarrow q\bar{q} l^+ l^-) \approx 9.4\%$)

 \Rightarrow invariant mass resolution: $\Gamma \sim 5.5 - 7.5$ GeV (Breit-Wigner like)

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

Analytical luminosity Spectra CompAZ

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution

mass spectra can be calculated for any $\sqrt{s_{ee}}$ and M_h without MC simulation

Invariant mass resolution for selected W^+W^- and ZZ events is parametrized as a function of $W_{\gamma\gamma}$.

Measured invariant mass distribution can be then described by convolution of:

- Analytical luminosity Spectra CompAZ
- Cross section formula for signal + background + interf.
- Invariant mass resolution

mass spectra can be calculated for any $\sqrt{s_{ee}}$ and M_h without MC simulation

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

$$\Gamma_{\gamma\gamma}$$
 only

assuming SM branching ratios

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

$$\Gamma_{\gamma\gamma}$$
 only

assuming SM branching ratios

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

$$\Gamma_{\gamma\gamma}$$
 only

assuming SM branching ratios

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

$$\Gamma_{\gamma\gamma}$$
 only

assuming SM branching ratios

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

$$\Gamma_{\gamma\gamma}$$
 only

assuming SM branching ratios

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

 $\Gamma_{\gamma\gamma}$ only

Sensitive to possible "new physics" only up to $M_h \sim 280 \text{ GeV}$

assuming SM branching ratios "new physics" modeled by SM-like 2HDM (II) with $M_{H^+} = 800 {\rm ~GeV}$

One parameter fit to invariant mass distribution for W^+W^- and ZZ events

 $\Gamma_{\gamma\gamma}$ only

Sensitive to possible "new physics" only up to $M_h \sim 280 \text{ GeV}$

For higher Higgs masses $\Gamma_{\gamma\gamma}$ is little sensitive to contribution of new heavy charged particles !

assuming SM branching ratios "new physics" modeled by SM-like 2HDM (II) with $M_{H^+} = 800 \text{ GeV}$

Two parameter fit to invariant mass distribution for W^+W^- and ZZ events

 $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$

Sensitive to possible "new physics" only up to $M_h \sim 280 \text{ GeV}$

For higher Higgs masses $\Gamma_{\gamma\gamma}$ is little sensitive to contribution of new heavy charged particles !

 $\phi_{\gamma\gamma}$ fit increases the error only slightly

assuming SM branching ratios "new physics" modeled by SM-like 2HDM (II) with $M_{H^+} = 800 \text{ GeV}$

Two parameter fit to invariant mass distribution for W^+W^- and ZZ events

 $\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$

Phase measurement significantly improves our sensitivity to new heavy charged particles at large Higgs boson masses

assuming SM branching ratios

Example: heavy charged Higgs boson of the SM-like 2HDM(II) with $M_{H^+} = 800 \text{ GeV}$

– p.13/15

$\Gamma_{\gamma\gamma}$ and $\phi_{\gamma\gamma}$ measurement

Two parameter fit to W^+W^- and ZZ invariant mass distribution; 1 PC year. Expected statistical error contours (1 σ) in $\phi_{\gamma\gamma}$ - $\Gamma_{\gamma\gamma}$, for $M_h = 300$ GeV:

 4^{th} generation lepton $M_L = 800 \text{ GeV} \Rightarrow$ SM-like 2HDM (II) \Rightarrow $M_{H^+} = 800 \text{ GeV}$

separation not possible without phase measurement !

Conclusions

Comparison of $\Gamma_{\gamma\gamma}$ results from different analyses

Our plans:

. . .

- $h \to b \overline{b}$ up to 160 GeV
- $H \rightarrow b\bar{b}$ in MSSM
- $P \text{ of } h \text{ in } h \to ZZ$