Polish participation in the International Linear Collider Project

Dr hab. Aleksander Filip Żarnecki Institute of Experimental Physics Warsaw University

Plenary session of RECFA meeting Warsaw, 25 of February 2005

- Polish institutes participate in the LC project since about 10 years.
- Most activities related to TESLA project superconducting technology.
- Close collaboration with DESY, Hamburg.
- Works intensified after technology decision in 2004
- \Rightarrow towards accelerator TDR and detector CDR in 2007
 - new collaborations
 - new projects

Overview of activities

Accelerator design

- superconducting cavity production
- cavity control and simulation
- accelerator alignment studies

Detector design

- high precision luminosity measurement
- vertex detector and flavour identification

Physics studies

- Physics case for Photon Collider
- Comparison of ILC physics potential with LHC and PC

Cracow group

<u>Institutes</u>

- AGH University of Science and Technology
- Institute of Nuclear Physics PAS
- Jagellonian University

<u>Staff</u>

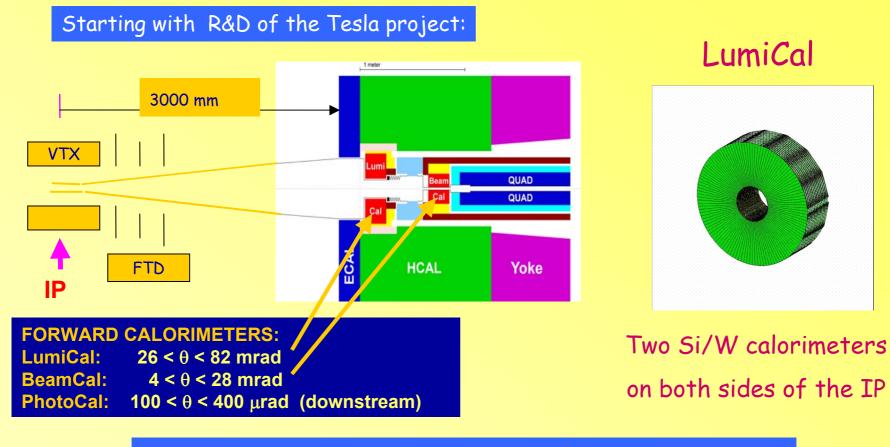
	full professors associate professors assistant professors	Ph. D.	Ph.	D. students	other
	6	3			3
Budget	t (including personnel)				
	in k€		2003	2004	
Institute		,	37	57	
	National	grants	20	24	

Forward Detectors for ILC experiment:

- BeamCal measurements of the beam parameters and fast beam monitoring
- LumiCal luminosity measurements
- PhotoCal measurements of the beam parameters from beamstrahlung photons

Main interests

R&D and construction of the LumiCal


for very precise $O(10^{-4})$ luminosity measurement using the Bhabha scattering process.

High precision is required from the physics program proposed for ILC.

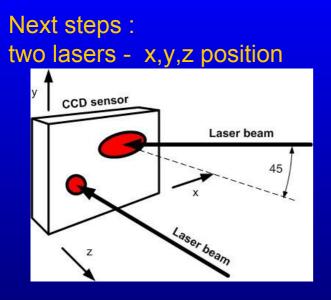
Collaboration with:

NC PHEP Minsk, Tel Aviv Univ. DESY Zeuthen, Inst. of Physics Prague, JINR Dubna, IHEP Protvino, Univ. of Colorado - Forward Calorimetry (FCAL) Collaboration

Forward Detectors at a International e - e + Linear Collider (ILC)

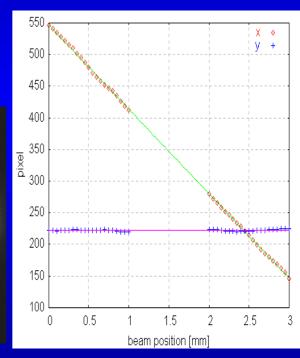
Cracow groups concentrate on LumiCal: •Extensive Monte Carlo studies •Design of the mechanics and silicon sensors structure •Development of the laser alignment method

Next steps :


the detailed design studies (background, x-angle), integration of calorimeter into ILC detector, technology choices, testbeam with prototypes, close collaboration with machine designers

Monitoring of the LumiCal Position – Laser Alignment Method

- To achieve precision ~ 10^{-4} in Lumi measurement, requirements for alignment are:
- inner radius of LumiCal $\sim 0.7 \ \mu m$,
- distance between LumiCals ~ 60 μm
- transversal (x,y) position ~ 100 μm


A method:

Principle: reconstruction of the laser spot (x,y) position on CCD camera

- Simple CCD camera
 - He-Ne red laser
 - Laser translated in 0.05 mm steps

First results:

Possible resolution of ~ 1μ m if the center of the light spot is determined with accuracy better than 0.1 pixel

Cracow group

Current activities

- the extensive Monte Carlo simulation studies of the detector;
- the design of the mechanics and silicon sensors structure;
- the development of the laser method of the LumiCal alignment.

Plans (next 2 years)

- ⇒ continuation of MC studies of LumiCal for more realistic design, full simulation including all mechanical structures, electronics and digitization
- ⇒ detailed design studies for mechanical and silicon sensor structures
- ⇒ prototype for the laser alignment system, systematic studies of its performance
- ⇒ construct and test the first LumiCal prototype: Si sensors + tungsten absorber

<u>Institutes</u>

- Institute of Nuclear Studies, Warsaw
- Institute of Physics, University of Łódź
- Institute of Experimental Physics, Warsaw University
- Institute of Theoretical Physics, Warsaw University

<u>Staff</u>

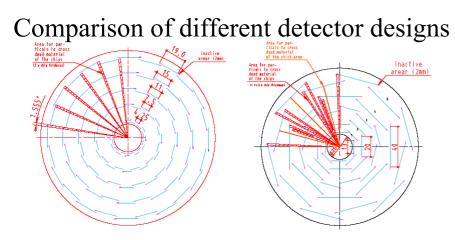
	full professors associate professors assistant professors	Ph. D.	Ph.	D. students	other
	4	2		2	2
Budget					
	in k€		2003	2004	
	Institute	es	10	10 15	
	Nationa	al grants	10	25	
	Deliele a enticipation in U.O. Ducient				

Main interests

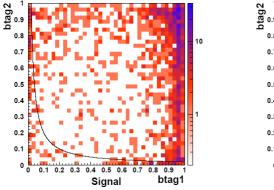
• vertex detector for ILC experiment

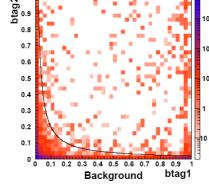
collaboration with DESY, Hamburg University, Institut de Recherches Subatomiques (IReS) and Laboratoire d'Electronique et de Physique des Systemes Instrumentaux (LEPSI) in Strasbourg

• accelerator alignment methods

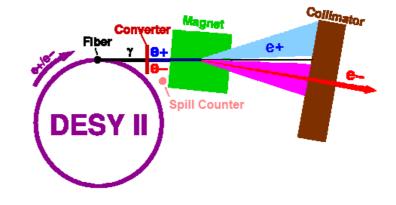

collaboration with DESY and Oxford University

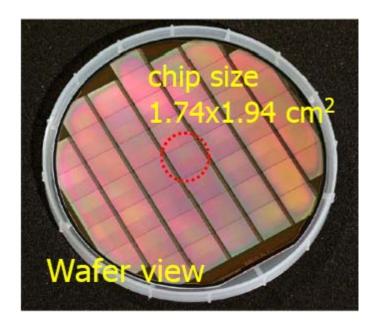
• Photon Collider project

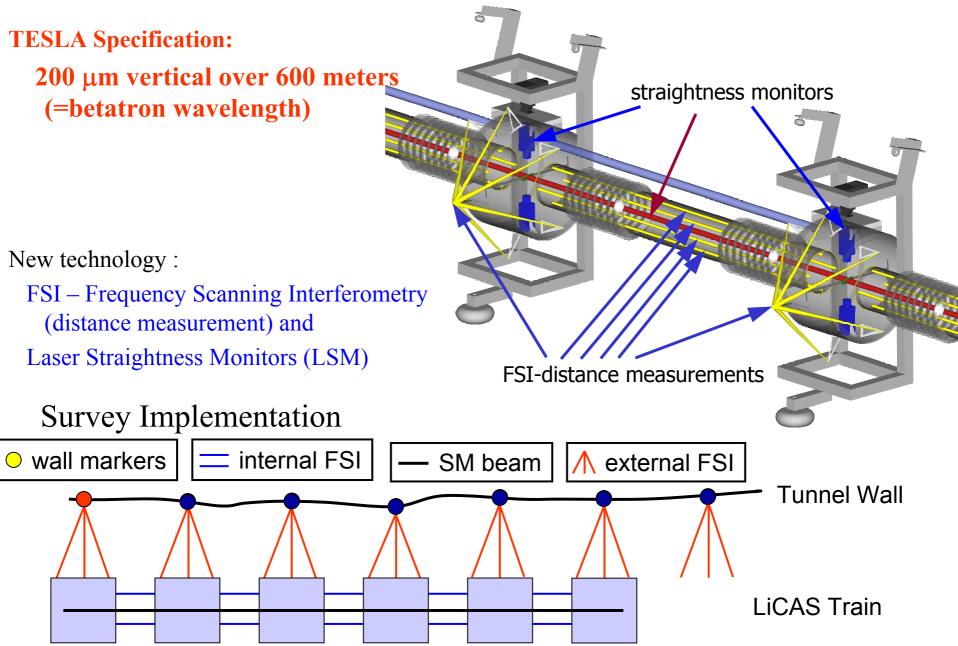

within ECFA Study of Physics and Detectors for a Linear Collider


Vertex detector studies

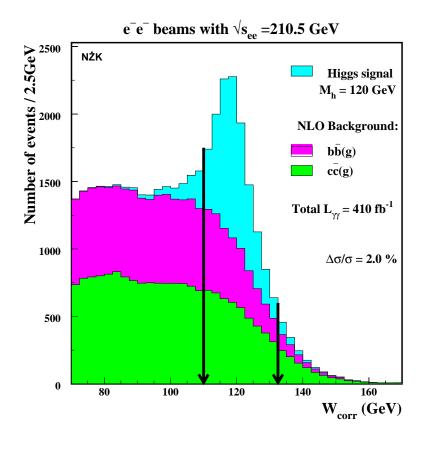
Simulation studies


Simulation of $H \rightarrow b \ \overline{b}$ measurement

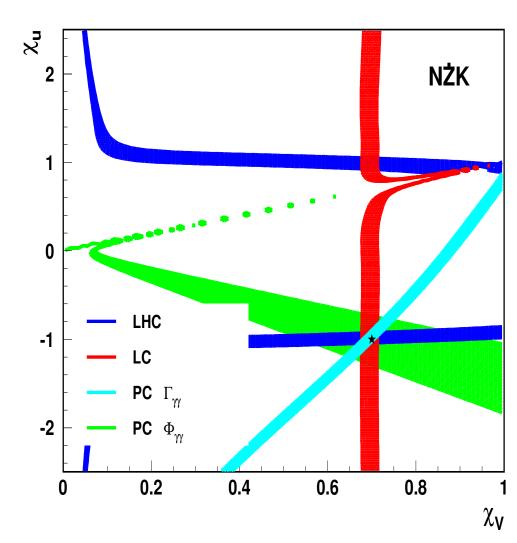



b-tagging for signal and background

MAPS beam-tests at DESY



LiCAS = Linear Collider Alignment and Survey



Physics case for the Photon Collider at ILC

Precise measurement of the Higgs boson production cross section at the Photon Collider Measurements of Higgs boson couplings at LHC, ILC and Photon Collider are complementary.

Sensitive to "new physics" even at very large energy scales.

Current activities

- vertex detector design optimization based on physics simulations
- simulation studies of laser alignment methods for ILC
- realistic studies of the Higgs boson measurements at the Photon Collider
- comparison of the physics potential of LHC, ILC and PC

Plans (new activities)

- ⇒ beam tests of the MAPS sensors for the vertex detector (just started)
- ⇒ design and tests of the laser cavity for the Photon Collider at ILC (considered) in collaboration with DESY-Zeuthen, KEK Japan

Institute for Nuclear Studies (IPJ), Świerk

Department of Plasma Physics and Technology

	professors	Ph. D.	eng.	other
	1	1	3	2
Budget			k€ per ye	ear
	Nationa	al grants	40	
	EU fund	ds	60	

Main activities

Ctaff

Joint Research Activity within Coordinated Accelerator Research in Europe CARE

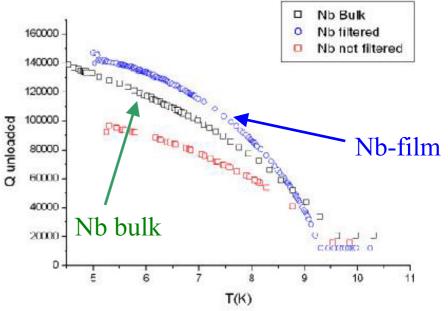
Thin Film Cavity Production

Development of a new method of superconducting cavity production: Cu-cavities coated with a thin Nb-layer under ultra-high vacuum (UHV) conditions. Close collaboration with INFN-Roma2, Rome, Italy

Thin Film Cavity Production

linear-arc discharge at the pressure of 4x10⁻¹⁰ mTr, arc current of 40 A

General view of the UHV system



to achieve good superconducting film properties the partial pressures of water, nitrogen, oxygen, CO_2 hydro-carbides etc., must remain well below 10^{-9} hPa

reliable and clean ignition technique required

Comparison of bulk Nb and Nb-film samples

Technical University of Łódź

Department of Microelectronics and Computer Science - DMCS

<u>statt</u>	professors	Ph. D.	Ph. D. students	other	
_	1	3	6	1	_

Budget: national grants: 35 k€ per year

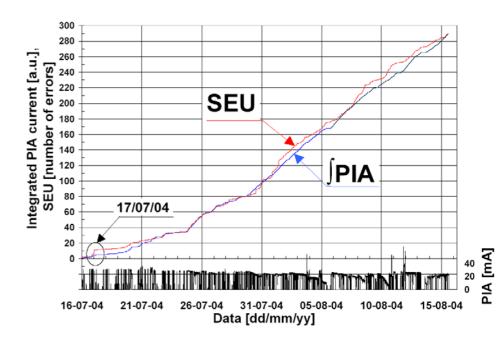
Main activities

Joint Research Activity within Coordinated Accelerator Research in Europe CARE

Superconducting Radio Frequency (SRF) programme:

- R&D on magneto-strictive tuner for superconducting cavities
- Radiation damage studies on electronics
- Development of Finite State Machine to automate RF operation (within Distributed Object Oriented Control System for the accelerator)

Radiation damage studies


Investigations focus on application of SRAM memories for detection and measurement of ratiation level

Prototype board

SRAM memory with two synchronously operating processors

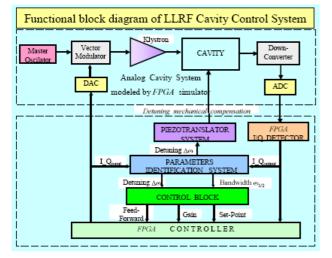
Test results: integrated neutron flux measurements

Technical University of Warsaw

Institute of Electronic Systems

Electronics for High Energy Physics Experiments group

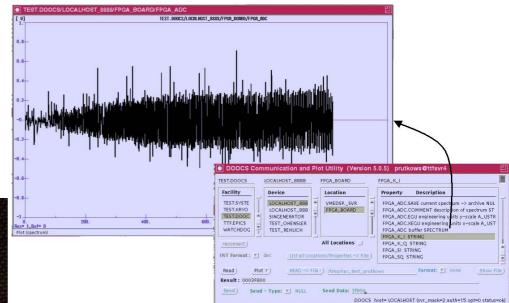
Staff				
	professors	Ph. D.	Ph. D. students	other
	1	2	6	4
		1		1

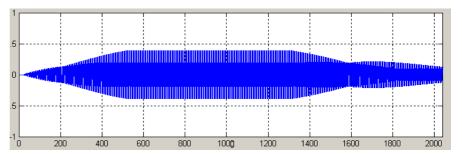

Main activities

Joint Research Activity within Coordinated Accelerator Research in Europe CARE

Superconducting Radio Frequency (SRF) programme:

- Cavity and RF gun controller
- Cavity and RF gun simulator
- Radiation tests


Cavity and RF gun controler


Prototype RF gun controler

Test results

Simulation results

Concluding remarks

- Increasing participation of Polish groups in ILC project
 - in addition, many individuals working in collaborating institutes
- Many diverse activities, new projects starting
- Involvement limited by funds, but also laboratory space and manpower
- International collaboration and support crucial