

Outline

- Introduction
- Motivation
- Future colliders and experiments $e^+ e^- \rightarrow tt$
- Prospects for precise measurements
 - threshold scan and top mass
 - Yukawa coupling
 - EW couplings

Introduction

Epiphany 2015

Peeping through the Higgs window!

October 28, 2014. ICFA-seminar on future perspectives in High Energy Physics (Beijing).

P5 likes Particle Astrophysics

Five science drivers:

- Higgs boson
- Neutrino mass
- Dark matter
- Cosmic acceleration
- Explore the unknown

Particle Astrophysics experiments address all but the first Many experiments address more than one Report supports expanded dark matter program, new cosmic surveys, and a new multi-agency program in CMB

Probing the Standard Model

- SM is self-consistent model accounting all particle physics phenomena at energy of current accelerators
 - with m_H all parameters of SM are known

 $m_w = 80385 \pm 15 \text{ MeV}$ $m_t = 173.34 \pm 0.76 \text{ GeV}$ $m_H = 125.36 \pm 0.41 \text{ GeV}$ Current p-value for (data | SM)=0.2 Need to improve m_w , m_t and m_H

Precision tests of further consistency of the SM are mandatory

October 28, 2014. ICFA-seminar on future perspectives in High Energy Physics (Beijing).

- SM does not provides no explanation for mass spectrum of fermions (and gauge bosons)
- Fermion mass generation closely related to the origin electroweak symmetry breaking
- Expect residual effects for particles with masses closest to symmetry breaking scale

Strong motivation to study chiral structure of top vertex in high energy e+e- collisions

Motivation

Top Quark Physics at Linear Colliders

The dominant production mechanism: Top pair production \bullet

- Measurements enabled by
 - known initial state & clean final state
 - Possibility for **polarized beams** crucial for coupling measurements

Top Precision Physics at Linear Colliders PANIC, Hamburg, August 2014

Yukawa coupling, strong coupling constant

Top properties: **mass**, width,

flavor-changing decays,...

Top properties: **mass**, width,

decay modes

Electroweak couplings sensitivity to BSM physics

7

LCWS Belgrade October 6-10, 2014

Short-distance mass schemes:

$$m^{\rm sd}(R) = m^{\rm pole} - R\left(a_1\frac{\alpha_s}{4\pi} + a_2\left(\frac{\alpha_s}{4\pi}\right)^2 + \dots\right)$$

MS mass: $R = \overline{m}(\mu)$, $a_1 = \frac{16}{3} + 8 \ln \frac{\mu}{m}$

Generic form of a shortdistance mass scheme.

Processes where heavy quarks are off-shell and energetic.

Threshold masses	(1S, PS, RS, kinetic masses)	Quarkonium bound states:
		heavy quarks are close to their

$$R \sim m \alpha_s$$

 $R \sim \Gamma_Q$

neavy quarks are close to their mass-shell.

Single quark resonance: heavy quarks are very close to their mass-shell.

The a_i 's are chosen such that the renormalon is removed.

(jet mass)

The scale R is of order the momentum scale relevant for the problem.

Jet masses

Top Mass at e⁺e⁻ Colliders

- Measurement in top pair production, two possibilities, each with advantages and disadvantages:
 - Invariant mass
 - experimentally well defined (but not theoretically: "PYTHIA mass")
 - can be performed at arbitrary energy above threshold: high integrated luminosity
 - Threshold scan
 - theoretically well understood, can be calculated to higher orders
 - needs dedicated running of the accelerator (but is also in a sweet spot for Higgs physics)
 - The "ultimate" mass measurement at a LC!

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

9

Target around 350GeV

> Top mass(\mathbf{m}_t)

- Important input parameter
- $-\overline{\text{MS}}$ scheme mass ($\mathbf{m_t}^{\overline{\text{MS}}}$)
 - \checkmark $\mathbf{m_t}^{\overline{\text{MS}}} = 160^{+5}_{-4} \text{ GeV} (\text{PDG})$
- Potential subtracted mass (m_t^{PS})
- > Decay width(Γ_t)
 - anomalous coupling
 - exotic decay
- > Top yukawa coupling(y_t)
 - Test of higgs mechanism
- $\succ \alpha_s$
- QCD wave function

TOP QUARK MEETING

Top-Z coupling

R. Rontsch **R.** Poeschl

70

Many models predict modifications in the coupling of the Z to top quarks.

LEP (+LC)

A_{FB}, constrain Zbb coupling, relate to Ztt through SU(2)

indirect

dgLt/gLt % Wulzer et al 20 Grojean et al 10 Diouadi et al dgRt/gRt % -70 -50 -30 -10 10 30 50 Wulzer et al 10 Hosotani et al LH -20 Carena et al Gherghetta et al Pomarol et al -30 -40 NZ ZN

30

LHC

 $\sigma(ttZ)$, rare process, previously limited by theory uncertainty

direct

future LC

A_{FB}, for precision must measure b-quark charge

direct

Threshold Production

relative velocity of quark-antiquark pair is small:

$$\sqrt{s} = E + 2m_Q \approx 2m_Q \quad \Rightarrow \quad v = \sqrt{\frac{E}{m_Q}} \ll 1; \quad v \sim \alpha_s(m_Q v)$$

- multi-scale problem: mass m_Q , momentum $m_Q v$, energy $m_Q v^2$
- perturbation theory breaks down due to terms proportional to $\frac{\alpha_s}{v}$ \rightsquigarrow Coulomb resummation
- formation of bound states below threshold
- $b\bar{b}$: bound-state resonances
- *tt*: large width prevents existence of bound states

2 / 12

Framework: potential NRQCD

scales: mass, *m*: hard \gg momentum, *mv*: soft \gg energy, *mv*²: ultrasoft $\gg \Lambda_{\rm QCD}$

alternative formulation: velocity NRQCD (vNRQCD)

[Luke,Manohar,Rothstein'00; Hoang,Stewart'03]

 $\sigma_{\rm tot}(e^+e^- \rightarrow t\bar{t})$

50 GeV $\leq \mu \leq$ 350 GeV $m_t^{
m PS}=$ 171.3 GeV

[Beneke et al.]

Future colliders and experiments

ILC - The International Linear Collider

- Currently the most advanced concept for a future energy frontier collider
 - e⁺e⁻ collider, baseline energy 500 GeV, high luminosity: 2 x 10³⁴ cm⁻²s⁻¹
 - staged construction, starting from 250 GeV / 350 GeV
 - upgrade to 1 TeV possible (extension of linacs), luminosity upgrade by rate increase

The ILC Accelerator Concept

- Electron and Positron Sources (e-, e+)
- Damping Ring (DR)
- Ring to ML beam transport (RTML)
- Main Linac (ML) : SCRF Technology
- Beam Delivery System (BDS)

100

80

yield [%]

20

Production yield: 94 % at > 35+/-20% Average gradient: 37.1 MV/m > R&D goal of 35 MV/m reached (2012)

test date (#cavities)

ILC preferred site - Kitakami

CLIC - The Compact Linear Collider

- A possible future energy frontier collider at CERN
 - e⁺e⁻ collisions at up to 3 TeV with high luminosity (~ 6 x 10³⁴ cm⁻²s⁻¹ at 3 TeV)
 - Staged construction 350 500 GeV, ~ 1.5 TeV, 3 TeV detailed energies under study, based on physics and technical considerations
 - Based on two-beam acceleration: gradients of 100 MV/m
 - Development phase until ~2018 CDR completed in 2012

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

CLIC layout at 3 TeV

Fig. 3.1: Overview of the CLIC layout at $\sqrt{s} = 3$ TeV.

Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018)

Forming an international collaboration to study:

- *pp*-collider (*FCC-hh*)
 → defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option
- 80-100 km infrastructure in Geneva area

CEPC-SppC

CEPC is an 240 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70 TeV or higher pp collider **SppC**, to study the new physics beyond the Standard Model.

Goal performance of e+ e- colliders

Identifying & Reconstructing Top Quarks

• Strategy depends on targeted ttbar final state

Semi-leptonic:

- isolated lepton ID, momentum measurement
 - provides t / tbar identification
- missing energy measurement

Universal

- Flavor tagging:
 - b identification
 - b/c separation
- b-Jet energy measurement
- light Jet reconstruction & energy measurement

All-hadronic

• global hadronic energy reconstruction

Perspectives for Top Physics at (I)LC TOP2014, Cannes, October 2014

8

LC Detector Requirements

(to detect of events with missing energy e.g. SUSY)

Events with large track multiplicity and a large number of Jets (6+) are expected.

Therefore:

- high Granularity
- good track Measurement
- good Track Separation
- •"Particle Flow" detectors

calorimetry and PFA

Jet energy resolution and background rejection drive the overall detector design

=> => fine-grained calorimetry + Particle Flow Analysis (PFA)

Physics Drivers II

₽e

 W^{\dagger}

'e

 \overline{v}_e

ve

Zد

Detector Systems at Linear Colliders

- Low-mass, high precision vertexing & tracking
- Highly granular calorimeters
- Particle flow event reconstruction

- CLIC detectors based on ILC concepts, with modifications in the calorimeters, vertex and forward regions to account for higher energy and higher backgrounds
- Detailed simulation models implemented in GEANT4
- Realistic event reconstruction including pattern recognition, tracking, PFA
- Full simulation studies used for all results presented here

6

- Threshold scan and top mass

The Luminosity Spectrum of different Colliders...

- The luminosity spectrum of different e⁺e⁻ colliders
 - ILC & CLIC Full machine simulations (GuneaPig)
 - FCCee (TLEP): Gaussian, with ullet0.19% sigma (includes BS)

Top Mass at e^+e^- Colliders AWLC2014, Fermilab, May 2014

... and what it does to the Top Threshold

The effects:

- ISR tail: lowering of effective L at top energy
- BS tail: lowering of effective
 L at top energy not at
 FCCee Gaussian spectrum,
 100% of L at > 99%
- LS & ISR broadening: smearing of Xsection due to beam energy spread, BS tail and ISR - most pronounced at CLIC comparable at ILC and FCCee

Top Mass at e⁺e⁻ Colliders AWLC2014, Fermilab, May 2014

σ_{tt} Measurement

Near the threshold region of top pair production ($\sqrt{s}=2m_t$), the energy dependence of σ_{tt} is large. And σ_{tt} depend on fundamental parameters. Then, using threshold scan technic, measuring σ_{tt} precisely and fitting it, these parameters are determined !!

Signal and background

Top Quark Reconstruction (6-Jet & 4-Jet)

	Clat	1 lot
Reconstruction method	6-Jet	4-Jet
Suppressing the background overlay using a	nti-k _T algorithm (F	R=0.7)
Isolated Lepton(<i>l_{iso}</i>) finding using cone energy cut	# of l_{iso} = 0	# of l_{iso} = 1
Jet clustering using Durham algorithm	Cluster to <mark>6jets</mark>	Cluster to 4jets
2 b-likeness Jets were found using LCFIPlus	-	-
Reconstruction of two W bosons	$q_1 + q_2 \& q_3 + q_4$	$q_1 + q_2 \& l_{iso} + v$
Reconstruction of two top quarks	-	-
Minimizing the χ^2	1	2
$\widehat{\mathbb{T}}$	<i>l</i>	_{so} finding
$(m_{3j^{a}reco.} - m_{t})^{2} (m_{3j^{b}reco.} - m_{t})^{2} (m_{2j^{a}reco.} - m_{w})^{2} (m_{2j^{b}reco.} - m_{w})^{2}$	je Vje	tī → bqqbq
$\chi_{\overline{6}-\text{Jet}} = \frac{\sigma_{t}^{2}}{\sigma_{t}^{2}} + \frac{\sigma_{t}^{2}}{\sigma_{t}^{2}} + \frac{\sigma_{t}^{2}}{\sigma_{w}^{2}} $		viappa ← JJ
2	– ш° 60 [-	
$(m_{3ireco.} - m_t)^2 + (m_{il\nu reco.} - m_t)^2 + (m_{2ireco.} - m_w)^2$	40	
$\chi_{4-\text{Jet}}^{z} = \frac{\sigma_{1}^{z}}{\sigma_{t}^{2}} + \frac{\sigma_{2}^{z}}{\sigma_{t}^{2}} + \frac{\sigma_{2}^{z}}{\sigma_{w}^{2}}$	20	
	ot	
TOP OUARK MEETING	0 20	40 60 80 P _{track} [GeV

QUARK IVIEETIING

Selection Table 6-Jet @350GeV

$$\mathcal{L}(t)dt = 5(\mathrm{fb}^{-1})$$

$$S = \frac{N_{Sig}}{\sqrt{N_{Sig} + N_{BG}}}$$

Left	tt6j	tt4j	tt2j	ww	ZZ	ZH	6f+4f	S _{6j}
Generated	1643	1583	381	32664	3004	694	71691	4.9
# of lepton = 0	1592	357	19	32079	2957	638	39983	5.7
btag > 0.1 × 2	1515	340	18	3601	1398	471	7399	12.5
Thrust<0.84	1485	313	13	398	433	383	1084	23.2
Evis>290 GeV	1481	159	1	218	310	309	90	29.2
missPt<38GeV	1473	72	0	217	307	303	80	29.7
m_t >100 GeV × 2	1467	69	0	180	253	255	63	30.7
y45> 0.0015 y56 >0.0007	1419	45	0	68	71	80	36	34.2
# of pfos>86	1406	38	0	45	59	73	33	34.6

S/N	5.67
δσ/σ	2.9%

6f: 6 fermion final state except ttbar

TOP QUARK MEETING

Fit - convolution -

OWe must consider "Beam effects" around threshold.

Fit -Result-

	6-J	let	4-Jet		
Stat. Error (iviev)	m _t ^{PS}	Γ _t	m _t ^{PS}	Γ _t	
Left(50fb ⁻¹)	28	40	33	48	
Right(50fb ⁻¹)	42	63	48	67	
Left (50fb ⁻¹) + Right(50fb ⁻¹)	23	34	27	39	

Combined ALL

$$\bigcirc \underline{PS \rightarrow \overline{MS}}$$

 $m_t^{\overline{MS}} \sim m_t^{PS} - \frac{4}{3\pi} (m_t^{PS} - 20) \alpha_s + ...$
 $m_t^{\overline{MS}} = 163.800 \pm 0.017 \text{ (stat.)(GeV)}$

 $\begin{array}{c} \left(\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \right) \\ \left(\begin{array}{c} \\ \end{array} \right) \\ \left(\begin{array}{c} \end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \end{array} \right) \\ \left(\begin{array}{c} \end{array} \right) \\ \left(\end{array} \right) \\ \left(\end{array} \right) \\ \left(\begin{array}{c} \end{array} \right)$

Center value: $m_t^{PS} = 172.000 \text{ GeV}$, $\Gamma_t = 1.400 \text{ GeV}$

TOP QUARK MEETING

A_{FB} near ttbar threshold

AWLC 2014 in CHICA

★Forward backward asymmetry of top quark(A_{FB})

- Since top has large Γ_t, we can measure A_{FB} by interfering the resonance of S-and P- wave.
- **□** The level split which is separation of two resonances depends on α_s .

$$A_{FB} \equiv \frac{N(\cos\theta_{top} > 0) - N(\cos\theta_{top} < 0)}{N(\cos\theta_{top} > 0) + N(\cos\theta_{top} < 0)}$$
Forward
Backward
$$e^{-t} \theta_{top}$$

$$e^{+}$$

$$e^{-t} e^{+t}$$

A_{FB} at the threshold

Can contribute to m_t and Γ_t measurement \bigotimes Detector level analysis still missing (?)

Mass Reconstruction Above Threshold

mass: substantial detector effects (peak width ~ 5 GeV compared to 1.4 GeV top width)

channel	$m_{\rm top}$	$\Delta m_{ m top}$	$\Gamma_{ m top}$	$\Delta\Gamma_{ m top}$
fully-hadronic	174.049	0.099	1.47	0.27
semi-leptonic	174.293	0.137	1.70	0.40
combined	174.133	0.080	1.55	0.22

The Valencia jet algorithm

A new clustering jet reconstruction algorithm that combines the good features of lepton collider algorithms, in particular the **Durham-like distance criterion**;

$$d_{ij} = min(E_{j}^{2\beta}, E_{j}^{2\beta})(1 - \cos \theta_{ij})/R^{2}$$

with the robustness against background of the longitudinally invariant \mathbf{k}_t algorithm

$$d_{iB} = p_T^{2\beta}$$

The exponent β allows to *tune* the background rejection level

The algorithm has been implemented as a **plugin for the FastJet** package and is available in fjcontrib

https://fastjet.hepforge.org/trac/browser/contrib/contribs/ValenciaJetAlgorithm

Marcel Vos, AWLC14

Parameter optimisation: R scan

INSTITUTO DE FÍSICA CORPUSCULAR

Jet reconstruction performance

CLIC di-boson (ZZ) production @ 500 GeV + 300 BX of $\gamma\gamma \rightarrow$ hadrons

Reconstruct Particle Flow objects using PANDORA + quality and timing cuts

Reconstruct jets (exclusive, n=4)

Form Z boson candidates, selecting best jet pairs

Nominal background: Durham is severely affected, longitudinally invariant k, and Valencia OK

Top Yukawa coupling at threshold

$$\int \mathcal{L}dt = \mathbf{100} \, \mathrm{fb^{-1}}$$

	(2 + 1) param fit	3 param fit	
mt	19 MeV	29 MeV	Stat. Uncertainties
Гt	38 MeV	39 MeV	Theoretical
yt	4.6%	5.9%	uncertainties ~70 MeV

T. Horiguchi

(0.5 without contribution from Higgsstrahlung)

e⁺

e

e⁺

e

Expected # of events @ 500fb⁻¹

- $\sqrt{s} = 500 \text{ GeV}$, Mh = 125 GeV, (Pe⁻, Pe⁺)=(-0.8, +0.3)
- production cross section

• Branching ratio

Process	σ (fb)	Decay mode	Branching ratio
e⁻e⁺ → tth	0.485	h→bb	0.577
$a^{-}a^{+} \rightarrow \pm \pm 7$	1.974	tt→bqqbqq	0.457
		tt→blvbqq	0.438
e⁻e⁺ → ttg(bb)	1.058	tt→blvblv	0.105
e⁻e⁺ → tbW	979.8		

expected # of signals and Backgrounds(@500fb⁻¹)

tth(tt6j, hbb)	63.9	tth(ttln4j,hbb)	61.3
tth(ttall, hnobb)	102.6	ttZ	987
tth(ttlvlv2j, hbb)	14.6	ttg(bb)	529
		tbW	489902

tth→8jets(lv+6jets) analysis

- interference term is negligible
- counting analysis with cut based event selection

In this analysis, higgs decays into two b jets

- 4 b jets out of 8(6) jets (b tagging: LCFIPlus)
- No (one) isolated lepton
- Use Kt clustering only for removing low Pt background

Event Selection

- signal topology
- ✓ Y cut (6, 8 jet event)
- ✓ No(one Isolated Lepton)
- ✓ B jet candidate ≥ 4
- detector acceptance $|\text{Jet } \cos \theta| \le 0.99$
- jet pairing
- ✓ $\chi 2 \le 11.2$ (16.5)

kinematics

- ✓ Leading 2 Jet Energy Sum
- ✓ Lowest 3 Jet Energy Sum (for 8jets mode) (Lowest 2 Jet Energy Sum (for 6jets mode))
- Missing momentum > 20 GeV (for 6jtes mode)

e

e

- reconstructed mass
- ✓ top candidate Mjjj ≥ 140 GeV
- ✓ higgs candidate Mjj ≥ 80 GeV
- ✓ 90GeV \leq h candidate Mjj \leq 155GeV

Result of ILD Full Simulation

Significance and

Precision of top-Yukawa coupling measurement with Systematic Uncertainties

- Mh=125 GeV, \sqrt{s} = 500 GeV, 500 fb⁻¹
- systematics: b tag eff. \pm 1,3%, JESF \pm 1,3% Br 1%, L 0.1%, pol 0.1%

tth->8 lets	with systematics	signficance	∆g _t /g _t
	0% (stat. only)	2.351	22.11%
	1% (b, JESF)	2.343	22.19%
	3% (b, JESF)	2.240	23.2%

lv+6iots	with systematics	signficance
ivi Ojets	0% (stat. only)	2.029
	1% (b, JESF)	2.019
	3% (b, JESF)	1.958

 $tth \rightarrow$

 $|\Delta g_t/g_t|$

25.62%

25.75%

26.55%

Rough estimation of significance and $|\Delta g_{tth}/g_{tth}|$ $@\sqrt{s} = 500-550 \text{ GeV}, 500 \text{ fb}^{-1}$ Combined result of 8jets and 6jets mode (* syst. error is not included) \sqrt{s} : $S/\sqrt{S+B}$: $|\Delta g_{tth}/g_{tth}| \%$: 16.74 500 : 3.105 : 5.113 : 10.16 520 : 7.403 550 7.023 cross section (fb) \sqrt{S} : tth(total) : ttz :tbw : ttbb 500 : 0.485 : 1.974 : 1.058 :979.8 : 2.753 520 : 0.981 : 1.151 : 953.5 : 3.806 :909.5 550 : 1.743 : 1.285

• ILC 1600fb⁻¹ at $\sqrt{s} = 500 \text{ GeV}$ $|\Delta g_{tth}/g_{tth}| \approx 9.48\%$ (1% syst. included) 9.36% (stat. only)

CLIC Analysis

1)

2)

3)

5)

Electrons Muons Lepton finding 10 Tau decay products Others Jet clustering 10^{-2} Flavour tagging 10^{-3} 4 b jets! 10^{-4} Jet grouping 4) 0.2 0.8 0.4 0.6 1 0 Calorimeter ECAL / ECAL+HCAL energy Choose permutation with smallest χ^2 : tī tītbb, 2 jet 0.1 Hadronic $\frac{(M_{12} - M_W)^2}{\sigma_W^2} + \frac{(M_{123} - M_t)^2}{\sigma_t^2}$ tībb, 6 jet $\frac{(M_{45}-M_h)^2}{\sigma_h^2}$ tībb, 4 jet $t\bar{t}H, 2 jet, H \rightarrow b\bar{b}$ 0.08 tīH, 2 jet, H not→ bb $t\bar{t}H, 6 \text{ jet}, H \rightarrow b\bar{b}$ tTH, 6 jet, H not $\rightarrow b\overline{b}$ $t\bar{t}H, 4 jet, H \rightarrow b\bar{b}$ 0.06 t**T**H, 4 jet, H not \rightarrow b**b** MVA selection on discriminating variables tīZ, 2 jet tīZ, 6 jet tīZ, 4 jet 0.04 Channel combination and compensation for 6) Higgsstrahlung 0.02 80 100 120 140 160 180 60 200 H_{bb} mass (GeV/c²) 6

MVA selection

- Similar discrimination in both channels
- No sign of overtraining

• Cuts on BDT response providing maximum significance (S / $\sqrt{S + B}$) used for cross section extraction

Details on the MVA selection

Process	Evt in 1.5 ab^{-1}	Evt with 0 leptons	Evt pas	s Had BDT	Evt with 1 lepton	Evt p	ass SL BDT
ttH, 6 jet, $H \rightarrow b\overline{b}$	647	593	357	(60.2%)	49	9	(18.8%)
ttH, 4 jet, $H \rightarrow b\overline{b}$	623	178	62	(35.1%)	420	233	(55.3%)
tt{H, 2 jet, H $\rightarrow bb$	150	13	1	(10.7%)	61	20	(32.5%)
ttH, 6 jet, H $\not\rightarrow$ bb	473	306	38	(12.3%)	127	8	(6.52%)
ttH, 4 jet, H $\not\rightarrow$ bb	455	89	5	(5.81%)	246	19	(7.82%)
ttH, 2 jet, H $\not\rightarrow b\overline{b}$	110	6	0	(1.52%)	33	1	(3.66%)
$t\bar{t}b\bar{b}$, 6 jet	824	737	287	(38.9%)	80	8	(9.75%)
$t\bar{t}b\bar{b}$, 4 jet	794	222	44	(19.6%)	533	175	(32.9%)
$t\bar{t}b\bar{b}$, 2 jet	191	16	1	(8.71%)	78	14	(18.1%)
tīZ, 6 jet	2,843	2,335	316	(13.5%)	322	12	(3.68%)
tīZ, 4 jet	2,738	711	49	(6.86%)	1,678	170	(10.2%)
tīZ, 2 jet	659	54	1	(2.03%)	248	13	(5.23%)
tī	203,700	111,020	1,399	(1.26%)	77,110	523	(0.68%)

MVA selection efficiencies for the signal samples:

60% for the hadronic channel

55% for the semileptonic channel

Hadronic channel: S / \sqrt{S} + B = 8.36 $\Delta(\sigma(t\bar{t}H)) = 12.0\%$

Combined:

$$\Delta(\sigma(t\bar{t}H)) = 8.1\%$$

 $\rightarrow \Delta(g_{ttH}) = 4.3\%$

Semileptonic channel: S / \sqrt{S} + B = 9.17 $\Delta(\sigma(t\bar{t}H)) = 10.9\%$

L = 1.5 ab⁻¹

 \rightarrow Precision on $g_{_{ttH}}$ would improve to better than 4% with -80% electron polarisaion

For comparison:

 $\Delta(g_{ttH}) = 4.3-4.5\%$ expected at 1 TeV ILC (form ILC TDR)

- Electroweak couplings

Electroweak Couplings of the Top Quark

The production of top pairs provides direct access to electroweak couplings - axial and vector form factors

$$\Gamma^{ttX}_{\mu}(k^2, q, \overline{q}) = ie\left\{\gamma_{\mu} \left(\widetilde{F}^X_{1V}(k^2) + \gamma_5 \widetilde{F}^X_{1A}(k^2)\right) + \frac{(q - \overline{q})_{\mu}}{2m_t} \left(\widetilde{F}^X_{2V}(k^2) + \gamma_5 \widetilde{F}^X_{2A}(k^2)\right)\right\}$$

X: Ζ, γ

A: axial coupling

V: vector coupling

 In total: 5 non-trivial CP-conserving form factors:

$$F_{1V}^{\gamma} \quad F_{1A}^{\gamma} \quad F_{2V}^{\gamma}$$

$$F_{1V}^{Z} \quad F_{1A}^{Z} \quad F_{2V}^{Z}$$

= 0 due to gauge invariance

- Accessible through measurements of:
 - Total cross-section
 - Forward-backward Asymmetry AFB
 - Helicity Angle λ distribution (related to fraction of left- and right-handed tops)
- For each: Two polarizations $e_{L}^{-} e_{R}^{+}$, $e_{R}^{-} e_{L}^{+}$

LC polarised beams crucial!

Accessing EW Couplings: Asymmetries & Angles

• Forward-backward asymmetry:

$$A_{FB}^{t} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N(\cos\theta > 0) + N(\cos\theta < 0)}$$

- ILC, 500 GeV, 500 fb⁻¹
- Two polarisation configurations:
 - e⁻_Re⁺_L: P(e⁻) -80%, P(e⁺) +30%
 - e⁻_Le⁺_R: P(e⁻) +80%, P(e⁺) -30%

~2% (stat+ syst)

Top Precision Physics at Linear Colliders PANIC, Hamburg, August 2014

Accessing EW Couplings: Asymmetries & Angles

• Helicity Angle

precision on helicity angle: ~4% (stat+ syst)

lacksquare

e⁻_Le⁺_R: P(e⁻) +80%, P(e⁺) -30%

Experimental challenge b-charge reconstruction - Motivation

- To measure $A_{_{FB}}$ in fully hadronic decays there is no choice
- In semi-leptonic decays there is the charged lepton but

Right handed electron beam:

- mainly right handed tops In final state (V-A)
- <u>Hard W</u> in flight direction of Top and soft b's
- Flight direction of t from flight direction of W

Left handed electron beam:

- mainly left handed tops
- <u>Hard b</u> in flight direction of Top and soft W's
- Flight direction of t from flight direction of b
- => Wrong association ↔ top flip

Measurement of b-charge to resolve ambiguities

Top polar angle using b charge (SL Analysis)

Results of full simulation study for DBD at $\sqrt{s} = 500$ GeV

IFICLAL ArXiv: 1307.8102

Precision: cross section ~ 0.5%, Precision A_{FB} ~ 2%, Precision λ_t ~ 3-4% Accuracy on CP conserving couplings

- ILC might be up to two orders of magnitude more precise than LHC ($\sqrt{s} = 14$ TeV, 300 fb⁻¹) Disentangling of vector/axial vectol couplings for ILC One variable at a time For LHC However LHC projections from 8 years old study
- Need to control experimental (e.g. Top angle) and theoretical uncertainties (e.g. Electroweak corrections)
 > Dedicated work has started
- Potential for CP violating couplings at ILC under study

(However CP violation would rather show up at threshold)

ILC will be indeed high precision machine for electroweak top couplings

Impact of BSM on Top Sector

In composite Higgs models, it is often said that *the top quark is partially composite*, resulting in *form factors in ttZ couplings*, which can be measured at ILC. *Beam polarization is essential* to distinguish the *left- and right-handed couplings*.

Conclusions

- Precise determination of top parameters is crucial for validation of the Standard Model (or any alternative BSM theory)
- Top threshold scan at the e⁺e⁻ collider gives unique oportunities for precise mass, width and coupling determination
- Determination of Yukawa and electroweak couplings require running at higher beam energies
- Even in clean e⁺e⁻ environment top event reconstruction is very challenging. Stringent requirements are imposed on detector performance.

The solid pillars of the LC physics program

Top quarkW BosonHiggs Boson

Discovered 1995 at Tevatron Discovered 1979 at SPS

LHC and ILC are/would be Top factories Mass precisely at Tevatron LHC and ILC are/would be W factories Discovered 2012 at LHC

ILC are/would be Higgs factories See talk by Klaus

AWLC14 – FNAL May 2014

Backup slides

Timeline: (HL-)LHC and future collider options

Jet reconstruction performance

The previous results in numbers: central value, width of the Z-boson mass peak and RMS₉₀

$\sqrt{s} = 500 \text{ GeV}$, no background overlay			
[GeV]	m_Z	σ_Z	RMS ₉₀
Durham	90.6	5.4	13.8
long. inv. k_t	90.4	5.3	14.3
Valencia	90.3	5.2	12.5
$\sqrt{s} = 500 \text{ GeV}, 0.3 \gamma \gamma \rightarrow hadrons \text{ events/BX}$			
[GeV]	m_Z	σ_Z	RMS ₉₀
Durham	101.1	13.6	28.8
long. inv. k_t	92.0	9.0	17.2
Valencia	92.5	9.2	16.2

e⁺e⁻ style algorithm can compete with hadron collider algorithm

INSTITUTO DE FÍSICA CORPUSCULAR