WG5 - Physics at highest Q^2 and p_T^2 summary

DIS2002

Gudrid Moortgat-Pick, Simona Rolli, Aleksander Filip Zarnecki

The big questions...

Origin of electro–weak symmetry breaking	Precision Higgs Physics (if Higgs exists) Precision SM Measurements (if no/very heavy Higgs exists)
Unification of the fundamental forces Hierarchy of scales	Precision Supersymmetry Extra Dimensions New Gauge Bosons
CP Violation and Flavour	Higgs? SUSY??
Gravity	Extra Dimensions

Overview

- The status of Standard Model tests
 - EW parameters
 - high E_t jets
 - EW symmetry breaking
- Beyond the SM
 - SUSY
 - LQ,CI,LED
 - **Z**00
- Future : HERA upgrade, TeVatron II, LHC, LC, VLHC

Status of SM

In general data agree very well with the SM:

LEP EW parameters precision measurements T. Saeki Basic assumption in global fit: SM provides correct description of experimental data

Comparison of SM prediction with the data: [LEPEWWG '02]

Winter 2002

	Measurement	Pull	(O ^{meas} -O ⁱⁱⁱ)/o ^{meas}
$\Delta \alpha_{\rm bad}^{(5)}(m_{\chi})$	0.02761 ± 0.00036	- 27	
m _z [GeV]	91.1875 ± 0.0021	.01	
Γ _z [GeV]	2.4952 ± 0.0023	42	-
ohad [nb]	41.540 ± 0.037	1.63	
B,	20.767 ± 0.025	1.05	
Ab	0.01714 ± 0.00095	.70	-
A(P)	0.1465 ± 0.0033	53	-
R	0.21646 ± 0.00065	1.06	
R _e	0.1719 ± 0.0031	11	
A	0.0994 ± 0.0017	-2.64	
Ab	0.0707 ± 0.0034	-1.05	-
Ab	0.922 ± 0.020	64	
A	0.670 ± 0.026	.06	
A(SLD)	0.1513 ± 0.0021	1.50	
sin ² 0 =pt (O_p)	0.2324 ± 0.0012	.86	
mw [GeV]	80.451 ± 0.033	1.73	
Fw [GeV]	2.134 ± 0.069	.59	
m, [GeV]	174.3 ± 5.1	08	
sin ² tw(vN)	0.2277 ± 0.0016	3.00	
Qw(Cs)	-72.39 ± 0.59	84	-
			-3-2-10123

Overall fit probability (quality of the fit): 1.7%

Jet at high E_t at HERA

C. Foudas

- Jet data at high E_T have been used at HERA-I to test QCD and make precise measurements of the gluons and α_S
- The detector and theory systematic errors have been well understood and we have learned that jet measurements can be made to better than 10% level if the E_T is high enough (high Q² is needed also)
- Low Q² regime is rich but require more precise theoretical calculations.
- HERA II will start soon !! One can expect a large increase of the high E_T high Q^2 samples which will enable us to tag the proton PDFs at higher x, measure α_S , BFKL, search for new physics.

Top physics

K. Sliwa

SUMMARY OF TEVATRON RUN-I RESULTS

comb ined CDF results from Run-I:

TO P MASS AND CROSS SECTION

 $M_{t} = 176.0 \pm 6.5 \text{ GeV/e}^{2}$

 $\sigma_{tt} = 6.5 \pm 1.7 \pm 1.4 \text{ pb} \text{ (for } M_t = 175 \text{ GeV/c}^2\text{)}$

comb ined D0 results from Run-E

 $M_t = 172.1 \pm 7.1 \text{ GeV/c}^2$

 $\sigma_{tt} = 5.9 \pm 1.7 \text{ pb} \text{ (for } M_t = 172.1 \text{ GeV/c}^2\text{)}$

combined CDF and D0 result from Run-I:

 $M_t = 174.3 \pm 5.1 \text{ GeV/c}^2$

27 krzysztof sliwa@tufts.edu

DIS 2002 Krakow, Poland April 30-May 4, 2002

28

IS IT ONLY TOP ?

Rapidity (CDF) and pseudorapidity (D0) distributions of tt system

Run II CDF B-physics prospects

- CP violation
- Improved measurement of sin(2β) in B⁰→J/ψK⁰_{S:} ≈20000 events σ(sin2β) ≈0.05
- B_S mixing in $B_S \rightarrow D_S \pi^+$ sensitivity up to about

x_S≈60 (≈23000 events)

 $x_{S} \approx 30$ in semileptonic decays

$x_s = \Delta m_s / \Gamma_s$

- Measurement of γ in $B^0_{d} \rightarrow \pi^+\pi^-$ and $B^0_{S} \rightarrow K^+K^-$ decays.
- Use of both decays reduces the influence of penguins.
- Assuming S/B=1/2 and Δm_S=30 ps⁻¹; events: 5000(π⁺π⁻)/10000(K⁺K⁻): σ(γ)≈7⁰

NuTev puzzling result

P.Spenziouris

Assuming predicted ν coupling, $(g_L^{\rm eff})^2$ appears low

4/30/02

Panagiotis Spentzouris

12

NuTeV (cont'd)

Asymmetric strange sea (?)

- Our PDF model assumes xs=xs bar
 - constrained by our dimuon production data, within our LO model
- Recent (almost) global PDF NLO analysis finds
 Jx(s s bar)dx = 0.002 (Barone et al., hep ph/9904512)
 - suggested as explaining half of the NuTeV effect (Davidson et al., hep ph/0112302)
- BUT: inconsitent with our dimuon x section (model independent); driven by high x CDHSW data
 - even s sbar=0.002 DOES NOT explain half the effect if experimental cuts, etc included

4/30/02

Panagiotis Spentzouris

22

Isolated lepton final states @HERA

N.Malden

H1 Results 94-00 Isolated Leptons

Electron and Muon	H1 Prel. e^+p Data	SM expectation	W	Other SM processes
$P_T^X > 0 \mathrm{GeV}$	18	10.48 ± 2.53	8.19 ± 2.46	2.29 ± 0.59
$P_T^X > 12 {\rm GeV}$	13	5.14 ± 1.31	4.22 ± 1.27	0.92 ± 0.33
$P_T^X > 25 {\rm GeV}$	10	2.82±0.73	2.34 ± 0.70	0.48 ± 0.18
$P_T^X > 40 {\rm GeV}$	6	0.99 ± 0.28	0.93 ± 0.28	0.05 ± 0.04

ZEUS Results 94-00 - Isolated Leptons

ZEUS preliminary	Electrons	Muons
1994-2000	Observed/expected (W)	Observed/expected (W)
e^+p 114 pb ⁻¹	7 / 9.9 ± 1.6 (2.4)	7 / 4.6 ± 0.6 (1.1)
$e^{-}p$ 16 pb $^{-1}$	3 / 1.1 ± 0.4 (0.3)	0/0.8±0.1(0.2)
Total 130 pb^{-1}	10 / 11.0 ± 1.6 (2.7)	7 / 5.4 ± 0.7 (1.3)

Final selection isolating W component:

ZEUS preliminary	Electrons	Muons
1994-2000 $e^{\pm}p$ 130 pb $^{-1}$	Observed/expected (W)	Observed/expected (W)
$P_T^X > {\rm 25~GeV}$	1/1.14 ± 0.06 (1.10)	1 / 1.29 ± 0.16 (0.95)
$P_T^X > 40 { m GeV}$	0/0.46±0.03(0.46)	0/0.50±0.08(0.41)

Isolated leptons (cont'd)

Muon Channel

2

0.77 ± 0.21

 0.68 ± 0.19

45%

Isolated leptons (cont'd)

Single top - Hadronic decay - (H1)

EW symmetry breaking

Higgs at LEP P.Zalewski

Despite the excellent perfomance of LEP the Higgs boson has not been found (yet) searches have been conducted in many sophisticated way. Some analysis still ongoing...

 \Rightarrow 2.1 σ excess over background expectation

Prospect for Higgs at TeVatron

M. Petteni

- Main mode of production difficult to trigger on and also to reconstruct. Swamped by QCD dijet production.
- More promising channel is the associated production where the gauge boson can be used as a trigger.
- Look for leptons, missing E_{T} and jets at trigger level.

Michele Petteni, Imperial College

DIS 2002

Prospects for Higgs at the TeVatron

Higgs Boson Decay

- Higgs decays to bb for m_H < 135 GeV.
- $\tau^+ \tau^-$ difficult at hadron collider.
- Above 135 GeV look for ZZ and WW decays.
- Two search strategies:
 - Below 135 GeV look for associated production with 2 bjets from the Higgs decay.
 - Above this limit exploit gluon fusion and reconstruct the two gauge bosons.

Michele Petteni, Imperial College

DIS 2002

Higgs at the TeVatron

SUSY Higgs Workshop

Michele Petteni, Imperial College

- Workshop used parametrised MC.
- Jet reconstruction, lepton id implemented at some level.
- 5 σ discovery looks possible for low mass higgs, exclusion up to about 180 GeV with 10 fb⁻¹.
- Luminosity is critical.
- Room for improvement.

DIS 2002

Run II extrapolations

MET + bb:

In respect to run I, <u>factor 1.4 (turn-on) x 1.3.</u> (improved geometrical acceptance)

Multijets:

in respect to runI <u>factor 3</u> (<u>double b-tag efficiency</u>)x1.3.

Snowmass 2001

 Assuming the same Signal to Background ratio as in RUN-I, the cross section limit at 95 % confidence level has been scaled as

 $Eff_{RI} / Eff_{RII} \times \sqrt{L_{R-I} / L_{R-II}}$

5/8/2005

SUSY at LEP

N. De Filippis

Conclusions

No excess was found at LEP experiments compatible with the productions of SUSY particles (N_{obs}≅N_{exp})

The absence of a signal is interpreted in terms of 95 % C.L. upper limits on the mass of the SUSY particles in the MSSM

We are waiting for physics beyond Standard Model from Tevatron and LHC experiments

Nicola De Filippis

DIS 2002, Cracow, 30 April - 4 May

28

SUSY Higgs

G. Weiglein

5/8/2005

SUSY at HERA

 $R\text{-}\mathsf{parity}$ violating $(R\!\!/_p)$ SUSY

But: most general theory that is supersymmetric, gauge-invariant and renormalizable has additional term:

- Resonant production of single SUSY particles
- SUSY particles can decay into standard particles

(\Rightarrow LSP no more stable)

J. Haller

SUSY at HERA (cont'd)

SUSY at HERA (cont'd)

Results in Constrained MSSM Models H1 gives limits in constrained models: common sfermion (gaugino) mass m₀ (m_{1/2}) at GUT scale masses at EW scale given by RGE Sfermion and gaugino sector are related \Rightarrow completely determined by : $m_0, m_{1/2}, \mu, \tan\beta, A_0$ minimal supergravity (mSUGRA): in addition: radiative EW symmetry breaking (REWSB) $\Rightarrow |\mu|$ is related to other parameters 8 160 H1 (b) mSUGRA, j = 1,2 ≌140 E $\tan \beta = 6, \mu < 0, A_0 = 0$ Excluded by H1 for $\lambda'_{111} = 0.3$ 120 HERA sensitivity folfor $\lambda'_{111} = 0.1$ 100 lows isomass curve 80 HERA's constraints 60 depend on λ' D0 limit 40 ⇒ HERA and Tevatron 260 Not Allowed Ge/ complement each 20 (No REWSB or other LSP = slepton

250 300 350

m (GeV)

Results in Constrained MSSM Models (cont.)

Special interest in stop production:

- $\tilde{t_1}$ may be the lightest squark
- \implies larger part of $(m_0, m_{1/2})$ -plane covered by HERA (compared to $\lambda'_{1j1}, j \neq 3$)

- Masses $M_{ ilde{t}_1}$ up to 245 GeV can be ruled out for $\lambda'_{131}=0.3$

 \Rightarrow HERA competitive to LEP at intermediate m_0 for λ'_{131}

Limits competitive with LEP and TeVatron DIS2002 - WG5 Summary

5/8/2005

100 150 200

23

SUSY at the TeVatron

- run I analysis are almost all finalized
- improved result on searches for gluinos and squarks

R. Stroehmer

Stop pair production

SUSY at the TeVatron

R. Stroehmer

LeptoQuarks at HERA

J. Sztuk

 $M \le \sqrt{s}$ s-channel production $M > \sqrt{s}$ s and u-channel exchange + interference (CI approximation)

Both NC and CC channels considered

LeptoQuarks at HERA

J. Sztuk

Generic model

Tevatron Leptoquark Limits

Existing Tevatron LQ Searches

S. Mattingly

- pp \rightarrow gg \rightarrow LQ LQ \rightarrow I⁺I⁻qq, I[±]vqq, vvqq
 - Limits depend on type of LQ (scalar/vector, generation), LQ-q-I couplings and $\beta = BR(LQ \rightarrow I^{\pm}q)$
- 1st generation LQ mass limits

1 st Gen.	β	Scalar (GeV/c)	Vector Minimal Coupling (GeV/c)	Vector Yang-Mills Coupling (GeV/c)
DZero	1	225(242)	292	345
	0.5	204	282	337
	0	98	238	298
CDF	1	220(242)	280	330
	0.5	202	265	310

Tevatron Leptoquark Limits

2 nd Gen	β	Scalar (GeV/c)	Vector Minimal Coupling (GeV/c)	Vector Yang-Mills Coupling (GeV/c)
DZero	1 0.5 0	200 180 98	275 260 238	325 310 298
CDF	1 0	202 123	171	222

3 rd Gen	β	Scalar (GeV/c)	Vector Minimal Coupling (GeV/c)	Vector Yang-Mills Coupling (GeV/c)
DZero	0.5 0	98	238	209 298
CDF	1 0	99 148	170 199	225 250

LEP LQ limits

◆LQ LQ → llqq
◆LQ LQ → lvqq
◆LQ LQ → vvqq

5/8/2005

LEP LQ limits

LFV at HERA

C. Genta

LED search at LEP

 $e^+e^- \rightarrow G\gamma$ cross-section goes as :

Signature :

$$\sigma \approx \frac{\sqrt{s}^{n}}{M_{D}^{n+2}}$$

- Single photon
- Missing energy

Number of extra dimensions

95% lo	wer limits on M _D (TeV):	2	3	4	5	6	7
	Aleph (189-209 GeV)	1.28	0.97	0.78	0.66	0.57	_
	Delphi (181-209 GeV)	1.38		0.84		0.58	
	L3 (189 GeV)	1.02	0.81	0.67	0.58	0.51	0.45
	Opal (189 GeV)	1.09	0.86	0.71	0.61	0.53	0.47

5/8/2005

[hep-ex/0201029]

P.Deglon

LED search @LEP

Aleph + Delphi + L3 + Opal

130 GeV – 209 GeV

P.Deglon

M_S (TeV)

95% CL lower limit :	$\lambda = -1$	$\lambda = +1$
$e^+e^- \rightarrow e^+e^-$	1.28	1.13
$e^+e^- \rightarrow \gamma\gamma$	1.14	0.95
Combined	1.39	1.13

[hep-ex/0103039]

LED @ TeVatron

S.Mattingly

Searches for virtual graviton exchange

LED searches at HERA

S. Schmitt

 $\lambda = +1$: 1.13 TeV $\lambda = -1$: 1.39 TeV LEP $\lambda = +1$: 1.1 TeV $\lambda = -1$: 1.0 TeV TeVatron, D0

5/8/2005

Contac Interactions

Limits on Compositeness models from HERA

Limits of order 2 - 7 TeV, depending on the model

Contact interactions @ HERA

Summary and conclusions

- HERA is sensitive to physics far beyond its center-of-mass energy, probing the structure of the *eu* and *ed* systems
- Explore light quarks \leftrightarrow complementary to LEP
- Limits on the contact interaction scale Λ up to $7 \,\mathrm{TeV}$
- Limits on leptoquark masses (coupling $\lambda = 1$) up to $1.4 \,\mathrm{TeV}$
- Limits on Squarks in R_p SUSY (coupling $\lambda = 1$) up to 0.75 TeV
- Probe quark radius down to $0.7 \cdot 10^{-3}$ fm
- Rule out large extra dimensions up to scales $M_S \lesssim 0.8 \,\mathrm{TeV}$

HERA II has just started:

- Collect factor of 10 more data
- Use polarized e[±] to disentangle left and right-handed couplings

18

P.Deglon

Contact Interaction Limits @LEP

Aleph + Delphi + L3 + Opal 130 GeV - 209 GeV

 $e^+e^- \rightarrow \mu^+\mu^- \text{ or } \tau^+\tau^-$

[LEP2FF/09-01]

for μ, τ : $\Lambda > 8.5$ TeV ... 26.2 TeV

5/8/2005

Beyond the SM (cont'd)

• Excited fermions at HERA A. Weber

Excited Fermions at HERA

No evidence for any excited fermions

Multileptons final states at HERA

C. Vallee

e provide p

elastic yy

Elastic $\gamma\gamma$ Inelastic $\gamma\gamma$ ee (resolved γ from p) DY (resolved γ from e)

Multileptons final states at HERA

Multileptons final states at HERA

- Multileptons final states at HERA
 - C. Vallee

SUMMARY

multi-electron production has been measured in e-p collisions for electron P_T 's up to ~50 GeV and electron pair masses up to ~100 GeV

good overall agreement is found with the Standard Model

6 events are seen with electron pair masses above 100 GeV

	data	SM
visible 2e $M_{12} > 100 \text{ GeV}$:	3	0.25 ± 0.05
" 3e " :	3	0.23 ± 0.04

LOOKING FORWARD TO HIGHER LUMINOSITY AND FURTHER INVESTIGATION OF THE EXCESS

TeVatron Run II status

Tevatron is planning to deliver 80pb⁻¹ by the end of September (200 pb⁻¹ by the end of 2002), but up to now ~40 pb⁻¹ delivered.

M.Wolter

ADD model and RS model limits

Tracey Pratt

DIS 2002, Poland

April 02

HERA upgrade

A.Metha

Integrated luminosity will be ${\sim}1000~\text{pb}^{\text{-1}}$

Luminosity will be shared equally between e⁺p and e⁻p and L and R polarizations Some data taken at lower CMS energy for F_Iand high x measurements High P_T Physics at HERA 2

- e^+p NC + CC Cross sections
- e^-p NC + CC Cross sections
- Longitudinally Polarised e^{\pm} measurements
- W production
- Z^0 and l^+l^- production
- High P_T jet production
- CC with γ
- CC with dijets
- \bullet Heavy Flavour at high Q^2

HERA upgrade

HERA upgrade

model	beam	best po	arization
	charge	left	right
right handed currents (CC)	e=		$e_R^- \rightarrow \nu_R$ (W_R)
SUSY R _P Violating	e+		$e_R^+ \rightarrow \bar{u}_L, \bar{c}_L, \bar{t}_L$
	e ⁻	$\begin{array}{c} e_L^- \rightarrow \\ \tilde{d}_R, \tilde{s}_R, \tilde{b}_R \end{array}$	
anomalous top	e±	t_I	,R
F = 0	e+	$S_{1/}$	$_{2},V_{0}$
Leptoquarks		$e_L^+ \to \overline{V_0^R}$	$e_R^+ \to \overline{V_1^L}$ $e_R^+ \to \overline{S_{1/2}^L}$
F = 2	e ⁻	S ₀ ,	$V_{1/2}$
Leptoquarks		$\begin{array}{c} e_L^- \to S_1^L \\ e_L^- \to \bar{V}_{1/2}^L \end{array}$	$e_R^- \rightarrow \hat{S}_0^R$
Contact Interaction	e±	var	ious
Quark Radius	e±	a	ny
Large Extra Dimens.	e±	a	ny
Excited Fermions	e±	$e_L^- \to f_R^*$	$e_R^+ \to f_L^*$
Excited Neutrinos	e-	$e_T^- \rightarrow \nu_D^*$	

27

Polarization at HERA

E. Gianfelice

Polarisation in electron rings

- 1/2 spin particle in a homogeneous magnetic field
- \rightarrow 2 stable states:

Sokolov-Ternov (1964): spin-flip synchrotron radiation.

• Equilibrium polarisation:

$$P_{ST} = \frac{W_{\uparrow\downarrow} - W_{\downarrow\uparrow}}{W_{\uparrow\downarrow} + W_{\downarrow\uparrow}} = 92.4\%$$

Spin kinematics

Polarisation (*if any*) builds up in the vertical direction, but polarisation along the particle motion direction is of interest for physics. Thomas-BMT equation (1959):

Polarization at HERA

Polarisation at HERA

 e^{\pm} beam longitudinal polarisation has been an integral part of the HERA design. The spins are rotated into the longitudinal direction by an interleaved sequence of vertical and horizontal bends (Buon-Steffen, 1985).

- HERA proved the possibility of getting longitudinal polarisation in a high energy electron ring.
- High longitudinal beam polarisation was routinely delivered to HERMES

Polarization measurements

Charged currents

Charged current cross-section depends linearly polarisation:

- electrons: $\sigma_{CC}(P) = (1-P) \sigma_{CC}(0)$
- positrons: $\sigma_{CC}(P) = (1+P) \sigma_{CC}(0)$

=> precise knowledge of polarisation as important as of luminosity! In order to...

- test SM cross-section,
- extrapolate to $P=\pm 1$
- · search for right-handed charged currents
- ... we need $\delta P/P < 1\%$, otherwise dominant syst. error at high Q²!

Neutral currents

x-section polarisation dependent due to Z^0 exchange and $Z^0 - \gamma$ -interference

=>vector & axialvector couplings of Z⁰ to u and d quarks:

- ~250 pb⁻¹ for each lepton charge & polarisation sign
- a_u, a_d also with P=0
- P≥0.5 allows precise extraction of v_u, v_d

...highly sensitive to systematic polarisation deviations!

Polarization measurements (cont'd)

Polarization measurements (cont'd)

TPOL: Analysis Upgrade

- Idea: fit double differential x-section
 => no assumptions about:
 - linear laser polarisation
 - η-y-transformation
 - calibration, alignment, resolution ...

RIGHT-LEFT

- First step : fit sum of spectra for laser both helicities => calibration
- Second step: fit difference => polarisation
- analysis not final yet
- no final systematic error yet

Jenny Böhme, DIS 2002, 05/02/02

Polarization measurements (cont'd)

Summary & Outlook

- Longitudinal Polarimeter:
 - operational, no major changes w.r.t. HERA I
 - · laser cavity upgrade to come!
- Transverse Polarimeter:
 - upgrade on
 - DAQ: mostly finished
 - Silicon strip detector: working
 - Analysis: in progress
 - understanding device down to < 1% seems feasible

The POL2000 group and the HERA experiments are looking forward to taking new data with polarised lepton beam!

The future: LHC status

G. Wrochna

LHC Status

- LHC magnets in production
- Exp. caverns well advanced
- Detector pre-assembly on surface going on
- Detector elements in mass production
- First detector elements (some muon chambers, calorimeter modules) delivered to CERN

LHC schedule

- First beam circulating
 April 2007
- First pp collisions
 June 2007

The LHC mythology

6 stories about LHC physics

Hades - nothing, but SM

Trojan Horse - SM higgs

Pandora's box - SUSY

Grzegorz Włochna

Higgs at LHC

 $tar{t} H^0_{SM}
ightarrow l^{\pm}
u q ar{q} b ar{b} ar{b} ar{b} \ m_{H^0} = 115 \; GeV/c^2$

The future: Linear Collider

K. Desch

What is so special about a Linear Collider?

cleanwell defined initial state kinematics
electro-weakly interacting initial state
large S/B for possible signals
tiny beam spot \rightarrow flavour tagflexibletunable beam energy 90 - \sim 1000 GeV
beam polarisation
runnning options ($\gamma\gamma$, $e\gamma$, e^-e^-) \rightarrow M. Krawczyk's talkprecisehigh luminosity (several 100 fb⁻¹/year)
excellent detector resolution (focus on physics, not on survival)
precise theory predictions (backgrounds, signals at loop level)

1. Precision measurement of top quark properties

mass and width – threshold scan:

Linear Collider

S(GeV)

Linear Collider

Gamma-Gamma option at LC

M.Krawczyk

A photon collider based on laser beams back-scattered from high energy electrons offers a unique opportunity to study resonant production of the Higgs boson in the process $\gamma\gamma \rightarrow H$

Process	Number of events	Efficiency
$\gamma\gamma \rightarrow h^{\circ} \rightarrow b\bar{b}$	7663	40.3%
$\gamma\gamma \rightarrow bb$		
$J_z = 0$	412	8.9%
$J_{z} = 2$	4690	5.2%
$\gamma\gamma ightarrow c\overline{c}$		
$J_z = 0$	37	0.5%
$J_z = 2$	4493	0.3%

$$\frac{\Delta \left[\Gamma(h \to \gamma \gamma) BR(h \to b\bar{b}) \right]}{\left[\Gamma(h \to \gamma \gamma) BR(h \to b\bar{b}) \right]} = \frac{\sqrt{N_{obs}}}{N_{obs} - N_{bkgd}} \approx 1.7\%$$

Without higher-order corrections.

Physics beyond the TeV scale...

S. Chivukula, Z.Lalak

Black holes production (LHC) through extra dimensions (n=6)

 $\begin{array}{l} \mathsf{M}_{\mathsf{BH}} > 5 \; \mathsf{TeV} \; \text{->} \; 1\mathsf{BH/sec} \\ \mathsf{M}_{\mathsf{BH}} > 10 \; \mathsf{TeV} \; \text{->} \; 3\mathsf{BH/day} \end{array}$

Signatures : 10% hard leptons 2% hard protons

Conclusions

- It has been a very interesting session
- we thank all our speakers
- and we look forward to new data from HERA2 and the Teavtron!