Optimisation of the ECAL-P readout configuration

Aleksander Filip Żarnecki

September 7, 2023

- Calibration framework
- 2 Performance tests
- Configuration optimization
- Position reconstruction

5 Conclusions

Calibration framework

- 2 Performance tests
- Configuration optimization
- 4 Position reconstruction
- Conclusions

Signal reconstruction

We assume that the calorimeter response is calculated as a weighted sum of signals from individual calorimeter layers:

$$S = \sum_i c_i \cdot s_i$$

where $i = 1 \dots N = 20$ numbers the calorimeter layers.

For the averaged signal values we can write: $i, j = 1 \dots N$

$$\langle S \rangle = \sum_{i} c_{i} \cdot \langle s_{i} \rangle$$

 $\langle S^{2} \rangle = \sum_{i,j} c_{i} \cdot c_{j} \cdot \langle s_{i}s_{j} \rangle$

Expected performance

For sampling calorimeter, assuming statistical fluctuations dominate:

$$\sigma_S \sim \sqrt{E} \qquad \Rightarrow \qquad \frac{\sigma_S}{\bar{S}} = \frac{a}{\sqrt{E}}$$

where a is a resolution parameter; simulation indicates $a \approx 0.2\sqrt{\text{GeV}}$ for ECAL-P.

Normalized response parameters

To compare detector response at different energies, we can use scaled quantities:

• relative response shift:

$$\delta_{S} = rac{ar{S} - E}{a\sqrt{E}} \longrightarrow 0$$
 for perfect calibration

• relative resolution:

$$\delta_{\sigma} = \frac{\sigma_{S}}{\overline{S}} \cdot \frac{\sqrt{E}}{a} \longrightarrow 1$$
 for expected resolution

Figure of merit

Two goals, when optimizing calibration factors for sensor layers:

• best linearity:

$$F_L = \sum_E w_E \ \delta_S^2(E)$$

• best resolution:

$$F_R = \sum_E w_E \, \delta^2_\sigma(E)$$

where weights w_E can be added to take the expected energy distribution into account.

Final optimization goal can be then defined as:

 $F = f_l \cdot F_L + f_r \cdot F_R$

where f_l and f_r define the relative weights of linearity vs resolution in the optimization

Analytic optimization

see backup slides for more details

Calibration factors for all layers, c_i , can be found by solving a set of linear equations. One can write it in a symbolic form:

$\mathbb{A}\cdot\vec{c} = \vec{B}$

where matrix \mathbb{A} and vector \vec{B} can be calculated from single layer averages, $\langle s_i^E \rangle$ and $\langle s_i^E s_j^E \rangle$.

These averages can be calculated only once (from MC event samples) and then use to test different optimization strategies \Rightarrow extremely fast!

Analytic optimization

see backup slides for more details

Calibration factors for all layers, c_i , can be found by solving a set of linear equations. One can write it in a symbolic form:

$$\mathbb{A}\cdotec{c}~=~ec{B}$$

where matrix \mathbb{A} and vector \vec{B} can be calculated from single layer averages, $\langle s_i^E \rangle$ and $\langle s_i^E s_i^E \rangle$.

These averages can be calculated only once (from MC event samples) and then use to test different optimization strategies \Rightarrow extremely fast!

When only resolution is considered (for $f_l = 0$), additional constraint has to be added: implemented using Lagrange multiplier

$$\sum_{E} \left(\sum_{i} c_{i} \langle s_{i}^{E} \rangle - E \right) = 0$$

Calibration framework

2 Performance tests

Configuration optimization

4 Position reconstruction

5 Conclusions

Test samples

/nfs/dust/luxe/group/MCProduction/SinglePositron/elaser_positron

- Samples produced in Nov 2021:
 - files: mc21.singlePositron_*.G4gun.SIM.se0002.root
 - e-laser configuration, positron gun at z = -7.4 m
 - positron energy range: from 2.0 GeV to 15.0 GeV, with 0.5 GeV step
 - 5000 events per file

Samples produced in 2023:

- files: mc21.singlePositron_*_ECALP_run2.G4gun.SIM.se0003.root
- e-laser configuration, positron gun at calorimeter face
- positron energy range: from 2.5 GeV to 15.0 GeV, with 2.5 GeV step
- 20000 events per file

Monte Carlo sample analysis example distributions for 8 GeV sample

Full calorimeter calibration old samples

Calibration factors from optimization in the positron energy range from 2 to 8 GeV

Resolution only

Resolution + linearity

Full calorimeter calibration old samples

Calibration factors from optimization in the positron energy range from 2 to 15 GeV

Resolution only

Resolution + linearity

Full calorimeter calibration old samples

Resolution from optimization in the positron energy range from 2 to 15 GeV

Resolution only

Resolution + linearity

Full calorimeter calibration new samples

Calibration factors from optimization in the positron energy range from 2.5 to 7.5 GeV

Resolution only

Resolution + linearity

Full calorimeter calibration new samples

Calibration factors from optimization in the positron energy range from 2.5 to 15 GeV

Resolution only

Resolution + linearity

Full calorimeter calibration new samples

Resolution from optimization in the positron energy range from 2.5 to 15 GeV

Resolution only

Resolution + linearity

- Calibration framework
- 2 Performance tests
- Configuration optimization
- 4 Position reconstruction

5 Conclusions

Approach

- Layers can be easily "deactivated" by forcing their calibration factors to zero.
- As the calibration procedure is very fast, it can be easily repeated for multiple configurations... With N = 20 gaps we have total of

$$N_{\rm comb} = 2^{20} - 1 = 1'048'575$$

possible layer configurations, which can be checked in $\mathcal{O}(1h)$ (for single energy).

We can then look for the optimal configuration for given number of instrumented layers...

Results shown are obtained when optimizing for resolution only...

Figure of merit ($\sim \sigma_F^2$) change as a function of the number of active layers, for E = 2.5 GeV

September 7, 2023 15/31

Figure of merit ($\sim\sigma_E^2)$ change as a function of the number of active layers, for E = 5 GeV

Figure of merit ($\sim \sigma_{E}^{2}$) change as a function of the number of active layers, for E = 10 GeV

ECAL-P optimization

Figure of merit ($\sim\sigma_E^2)$ change as a function of the number of active layers, for E = 15 GeV

N Best option 20 Results 19 18 **Optimal configurations** 17 16 for the decreasing number of active sensor layers 15 14 E = 2.5 GeV13 12 11 10 9 8 - active layer 7 . - empty slot 6 5 4 32

N Best option 20 Results 19 18 **Optimal configurations** 17 16 for the decreasing number of active sensor layers 15 14 E = 5 GeV13 12 11 10 9 8 - active layer 7 . - empty slot 6 5 4 32

Results

Optimal configurations for the decreasing number of active sensor layers

E = 10 GeV

- active layer

. - empty slot

Ν

L	Best option																				
)																					
9		.																			
8		.																	Ι.		ľ
7																					Ĺ
5	Ι.																				İ
5																					
4																					
ż.																					
5																					
1																					•
ว้																				•	•
																				•	•
																				•	•
				1		•			1	•										•	•
		• •		1		1		1	1	1			1		1	1			•	•	•
		• •		•	•	•		•	1	•			•						•	•	•
		• •		•	•	•							•						•	•	•
		• •	•	•						•		•	•		•	•			•	•	•
	•	• •	•	•				•					•		•	•		•	•	•	•
	•	• •	•	•	• •	•				•			•	•	•	•	•	•	•	•	•
	1																				

-

N Best option 20 Results 19 18 **Optimal configurations** 17 16 for the decreasing number of active sensor layers 15 14 E = 15 GeV13 12 11 10 9 87 - active layer . - empty slot 6 5 4 32

Results

Optimal configurations for the decreasing number of active sensor layers

 $E=2.5-7.5\ \text{GeV}$

- active layer

. - empty slot

I_L					В	e	s	t	0	р	ti	0	n					
0																Ι		Τ
9																		
8				T.												T		1
7				İ.											Ì	Ì		
6		H		İ.										Ì	Ì			
5		İİ	i	İ.	İ									j				
4		i i	i	İ.	İ									j				
3		1	ii	i.	ii									j		Ì	Ì	
2			i	i.	i									i	Ĵ	Ĵ	Ĵ	Ĵ
1			ii	i.	i										Ċ	Ĵ	Ĵ	Ĵ
ō	•		i	i.	i													
ă	•	•		i.	ii									•	•	•	•	•
2	•	•		ł.										•	•	•	•	•
7	•	•	•	ł.	1									•	•	•	•	•
	•	•	'i	Ł	1									•	•	•	•	•
5	•	• •	•	1	i						•	1	•	•	•	•	•	•
ך 1	•	• •	1	•									•	•	•	•	•	•
+	•	• •	• •	÷	•							•	•	•	•	•	•	•
2 N	•	• •	• •	1	• •	•	•				•	•	•	•	•	•	•	•
2	•	• •	• •	I.	• •		• •	•		•	•	•	•	•	•	•	•	•
L	•	• •	• •	•	•									•	•	•	•	•

Results

Optimal configurations for the decreasing number of active sensor layers

 $\mathsf{E}=2.5-15~\mathsf{GeV}$

| - active layer

. - empty slot

			Be	est	0	oti	0
					Π		
•							
•							
•							
•							
•							
•							
•	•				IJ	•	
•	•				IJ	•	
•	•	١.		ļΤ.	IJ	•	
•	•	•		١.	İ I	:	
•	• 1	· !	U.	<u>ا :</u>	! :	1	
•	• •		. !	١.	ų	•	
•	• •	•		: L	<u>ا :</u>	•	
•	• •	•	•	<u>ا</u> ا	١.	•	
•	• •	•	۱ <u>۰</u>	۰ ا	٠l	•	•
•	• •	۱ <u>۰</u>	•	• :	•	•	•
•	•••	•	••	• 1	• ;	•	
•	•••	•••	۱.	: ·	•	•	• •
• •				•			

<u>N</u> 20

19 18

17 16

15 14

13

12

11 10

9

8

. . .

. . . .

. . . .

.

. | |

.

Result summary

calibration optimized for best energy resolution in 2-15 GeV range

- Calibration framework
- 2 Performance tests
- Configuration optimization
- Position reconstruction

5 Conclusions

Secondary optimization goal

For single showers, we want to verify position-energy relation with ECAL only. When running in high intensity conditions photon energy is given by shower position (!) and the energy measurement is used to extract the photon flux at given energy.

 \Rightarrow we need precise position determination as well!

from Shan's presentation in plenary session

Optimization

Optimal calibration factors for full calorimeter, calibration for 2.5 to 7.5 GeV

Energy reconstruction

Position reconstruction (weighted average)

Optimization

Optimal calibration factors for full calorimeter, calibration for 2.5 to 15 ${\rm GeV}$

Energy reconstruction

Position reconstruction (weighted average)

Fw

26 / 31

Configuration scan

Figure of merit change as a function of the number of active layers, for $\mathsf{E}=2.5-15~\mathsf{GeV}$

Position resolution optimization

FoM/FoM₂₀ FoM/FoM₂₀ 10² 10² 10 10 15 20 15 20 n 5 10 5 10 #sensitive lavers #sensitive lavers A.F.Żarnecki (University of Warsaw) ECAL-P optimization September 7, 2023

Energy resolution optimization

Figure of merit change as a function of the number of active layers, for $\mathsf{E}=2.5-15~\mathsf{GeV}$

Position resolution optimization

Energy resolution optimization

Position reconstruction

Configuration scan

Optimal configurations looking at the Y position spread only position calculated as weighted average

 $\mathsf{E}=2.5-15~\mathsf{GeV}$

- | active layer
- . empty slot

N_L	Best option
20	
19	
18	
17	
16	
15	
14	
13	
12	
11	
10	
9	
8	
7	
6	
5	
4	
3	
2	
1	

Optimization

Position vs resolution optimization results for N=15 hardware configurations

2.5-15 GeV

Position reconstruction

Result summary

calibration optimized for best position resolution in 2-15 GeV range

- Calibration framework
- 2 Performance tests
- Configuration optimization
- 4 Position reconstruction

5 Conclusions

General framework for calorimeter response optimization. Including response linearity, energy resolution and position resolution goals.

Different calorimeter configurations can be very efficiently compared.

The framework was used to look for the optimal ECAL-P readout configuration when running with the reduced number of sensitive layers.

When only the energy resolution is taken into account, instrumenting layers 3–17 seems to be the best choice.

However, considering also the position measurement precision, and that the spectra is dominated by low energy positrons, instrumenting layers 2–16 looks like a better/safer solution.

Backup slides

Linearity

Relative response shift:

$$\delta_{S}(E) = \frac{\bar{S} - E}{a\sqrt{E}} = \frac{1}{a\sqrt{E}} \left[\left(\sum_{i} c_{i} \cdot \langle s_{i}^{E} \rangle \right) - E \right]$$

Figure of merit for linearity:

$$F_L = \sum_E w_E \, \delta_S^2(E) = \sum_E \frac{w_E}{a^2 E} \left[\left(\sum_i c_i \cdot \langle s_i^E \rangle \right) - E \right] \cdot \left[\left(\sum_j c_j \cdot \langle s_j^E \rangle \right) - E \right]$$

Minimum is found by calculating derivatives:

 $i, k = 1 \dots N$

$$\frac{\partial F_L}{\partial c_k} = \sum_E 2w_E \,\delta_S(E) \,\frac{\partial \delta_S(E)}{\partial c_k} = \sum_i c_i \left(\sum_E \frac{2 \,w_E}{a^2 E} \langle s_i^E \rangle \langle s_k^E \rangle \right) - \sum_E \frac{2 \,w_E}{a^2} \langle s_k^E \rangle$$

 \Rightarrow set of linear equations for extracting values of c_i ...

Resolution

Expected resolution:

$$\sigma_{S}^{2} = \langle S^{2} \rangle - \langle S \rangle^{2}$$

$$= \sum_{i,j} c_{i} c_{j} \langle s_{i} s_{j} \rangle - \left(\sum_{i} c_{i} \langle s_{i} \rangle \right) \cdot \left(\sum_{j} c_{j} \langle s_{j} \rangle \right)$$

$$= \sum_{i,j} c_{i} c_{j} \left(\langle s_{i} s_{j} \rangle - \langle s_{i} \rangle \langle s_{j} \rangle \right)$$

Relative resolution modified to obtain a linear problem:

$$\delta_{\sigma}^2 = \frac{\sigma_S^2}{\bar{S}^2} \cdot \frac{E}{a^2} \approx \frac{\sigma_S^2}{a^2 E} \quad \text{for proper calibration: } \bar{S} \to E$$

Resolution

Figure of merit for resolution:

$$F_{R} = \sum_{E} w_{E} \delta_{\sigma}^{2}(E) = \sum_{E} \frac{w_{E}}{a^{2}E} \sum_{i,j} c_{i} c_{j} \left(\langle s_{i}^{E} s_{j}^{E} \rangle - \langle s_{i}^{E} \rangle \langle s_{j}^{E} \rangle \right)$$

Partial derivatives:

$$\frac{\partial F_R}{\partial c_k} = \sum_E 2w_E \,\delta_\sigma(E) \,\frac{\partial \delta_\sigma(E)}{\partial c_k} = \sum_i c_i \left[\sum_E \frac{2w_E}{a^2 E} \left(\langle s_i^E s_k^E \rangle - \langle s_i^E \rangle \langle s_k^E \rangle \right) \right]$$

Minimum condition for the total FoM:

 $\frac{\partial F}{\partial c_k} = f_l \cdot \frac{\partial F_L}{\partial c_k} + f_r \cdot \frac{\partial F_R}{\partial c_k} = 0 \qquad f_l, \ f_r - \text{relative weights of linearity and resolution}$ $\Rightarrow \sum_i c_i \sum_E \frac{2 w_E}{a^2 E} \left[f_r \langle s_i^E s_k^E \rangle + (f_l - f_r) \langle s_i^E \rangle \langle s_k^E \rangle \right] = \sum_E \frac{2 w_E}{a^2} f_l \langle s_k^E \rangle$