Limits on top FCNC decay $t \rightarrow ch$ from CLIC at 380 GeV

Aleksander Filip Žarnecki

Faculty of Physics, University of Warsaw

CLIC Detector and Physics Collaboration Meeting

A.F.Żarnecki (University of Warsaw)

Limits on $t \rightarrow ch$

August 29, 2017 1 / 35

Introduction

- 2 Event classification
- 3 Clustering quality estimate
- 4 Energy correction for *b* jets
- 5 Updated results

Motivation

In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM): $BR(t \rightarrow c \gamma) \sim 5 \cdot 10^{-14}$

 $BR(t \rightarrow c \gamma) \sim 5 \cdot 10$ $BR(t \rightarrow c Z) \sim 1 \cdot 10^{-14}$ $BR(t \rightarrow c g) \sim 5 \cdot 10^{-12}$ $BR(t \rightarrow c h) \sim 3 \cdot 10^{-15}$

Any signal is a direct signature of "new physics" ...

Motivation

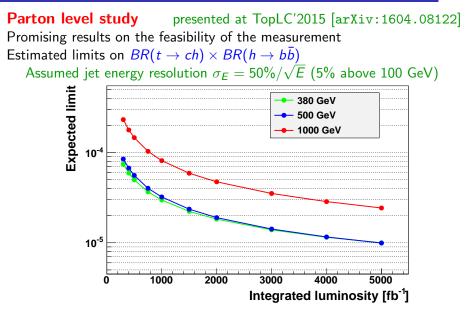
In the Standard Model, FCNC top decays are strongly suppressed (CKM+GIM): $BR(t \rightarrow c \gamma) \sim 5 \cdot 10^{-14}$

 $\begin{array}{rcl} BR(t \rightarrow c \gamma) &\sim & 5 \cdot 10^{-14} \\ BR(t \rightarrow c Z) &\sim & 1 \cdot 10^{-14} \\ BR(t \rightarrow c g) &\sim & 5 \cdot 10^{-12} \\ BR(t \rightarrow c h) &\sim & 3 \cdot 10^{-15} \end{array}$

Any signal is a direct signature of "new physics" ...

Decay $t \rightarrow c h$ is most interesting:

- well constrained kinematics
- test of Higgs boson couplings
- seems to be most difficult for LHC


Two Higgs Doublet Model (2HDM) as a test scenario:

- one of simplest extensions of the SM
- $BR(t \rightarrow c h)$ up to 10^{-2} (tree level) and 10^{-4} (loop level)

Estimated HL-LHC reach: (Snowmass 2013/ATLAS 2016) $BR(t \rightarrow qh) \sim 2 \cdot 10^{-4}$

Motivation

LCWS'2016 results

Expected limits for hadronic channel

Preliminary results based on CLIC full simulation @ 380 GeV

Final signal selection efficiency: 3.9% (5.9% of hadronic decays) Background suppression: $1.2 \cdot 10^{-5}$

Expected 95% C.L. limit for 500 fb⁻¹ at 380 GeV preliminary

 $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) < 2.6 \cdot 10^{-4}$

With luminosity of 1000 fb⁻¹ at 380 GeV

 $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) < 1.7 \cdot 10^{-4}$

assuming $t\bar{t}$ cross section at 380 GeV of 820 fb

see: http://hep.fuw.edu.pl/u/zarnecki/talks/afz_lcws2016.pdf

Full simulation for CLIC @ 380 GeV

Dedicated samples generated with WHIZARD 2.2.8 Signal: SARAH implementation of 2HDM(III), BR($t \rightarrow ch_1$) = 10⁻³

Beam spectra for CLIC taken from file (350 GeV scaled to 380 GeV) Beam polarization of -80%/0% (for e^-/e^+)

Hadronization done in PYTHIA 6.427 quark masses and PYTHIA settings adjusted to CLIC CDR Standard event processing with CLIC_ILD_CDR500 configuration

Samples considered in the study

- dedicated FCNC signal sample $e^+e^- \longrightarrow ch_1 \bar{t}, \ t\bar{c}h_1$
- test sample of SM background $e^+e^- \longrightarrow t\bar{t}$ for simulation validation
- full 6-fermion sample as produced for CLIC $t\bar{t}$ studies

Signal and background samples normalised to 500 fb⁻¹ Assumed $t\bar{t}$ cross section at 380 GeV: 820 fb

DST files processed with MARLIN, ilcsoft v01-17-09 (ilcDIRAC)

- Using LooseSelectedPandoraPFANewPFOs as input collection
- LCFI+ primary and secondary vertex finder
- LCFI+ jet finding with Valencia algorithm
- LCFI+ vertex corrections and flavour taging

DST files processed with MARLIN, ilcsoft v01-17-09 (ilcDIRAC)

- Using LooseSelectedPandoraPFANewPFOs as input collection
- LCFI+ primary and secondary vertex finder
- LCFI+ jet finding with Valencia algorithm
- LCFI+ vertex corrections and flavour taging

Final analysis in root:

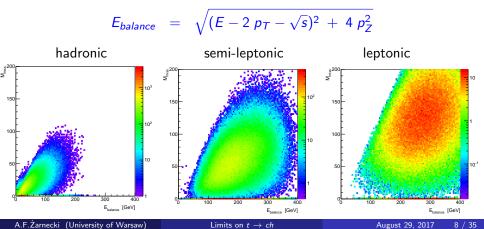
event classification

into hadronic, semi-leptonic, leptonic samples

- pre-selection cuts (loose cuts on flavour tagging)
- kinematic fit
- final selection based on BDT optimised for best BR limit

DST files processed with MARLIN, ilcsoft v01-17-09 (ilcDIRAC)

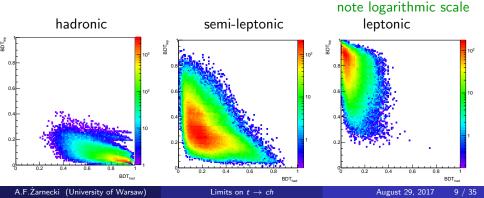
- Using LooseSelectedPandoraPFANewPFOs as input collection
- LCFI+ primary and secondary vertex finder
- LCFI+ jet finding with Valencia algorithm
- LCFI+ vertex corrections and flavour taging


Final analysis in root:	Recent progress:				
 event classification 	Improved				
 clustering "quality" estimate 	NEW!				
 pre-selection cuts (loose cuts on flavour tagging) 					
• kinematic fit	b-jet energy correction				
 final selection based on BDT optimised for best BR limit 					

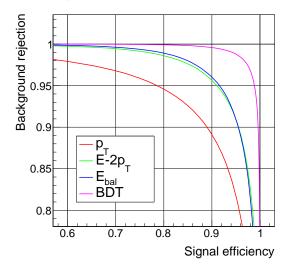
Event classification

Two signal channels: fully hadronic and semi-leptonic $t\bar{t}$ decays Background: fully hadronic, semi-leptonic and leptonic $t\bar{t}$ events

Different selection algorithms considered previously, based on: p_T , $E - 2p_T$, missing invariant mass M_{miss} , energy balance


Event classification

Two signal channels: fully hadronic and semi-leptonic $t\bar{t}$ decays Background: fully hadronic, semi-leptonic and leptonic $t\bar{t}$ events


New approach:

used two BDTs for event classification: "hadronic" and "leptonic" tags based on total energy-momentum, event shape and jet parameters (y_{min} , y_{max}), lepton ID \Rightarrow much improved efficiency/purity

Comparison of different approaches to selection of hadronic $t\bar{t}$ decays (for background sample)

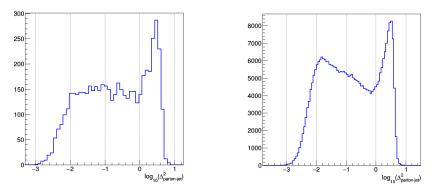
To understand top reconstruction better, event kinematics was compared between different levels (for hadronic final state):

- parton level: six fermion final state (as generated by WHIZARD)
- particle level: result of PYTHIA hadronisation MCParticles clustered in six jets (Valencia algorithm)
- LCFIPlus jet level: six jet final state, after detector simulation (clustering with Valencia algorithm)
- alternative algorithms: six jet final state reconstructed with different jet algorithm (Valencia with different settings, angular, anti-k_T)

To understand top reconstruction better, event kinematics was compared between different levels (for hadronic final state):

- parton level: six fermion final state (as generated by WHIZARD)
- particle level: result of PYTHIA hadronisation MCParticles clustered in six jets (Valencia algorithm)
- LCFIPlus jet level: six jet final state, after detector simulation (clustering with Valencia algorithm)
- alternative algorithms: six jet final state reconstructed with different jet algorithm (Valencia with different settings, angular, anti-k_T)

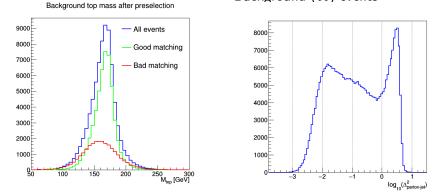
"Distance" Δ^2 reflects the agreement between different levels, eg.:


$$\Delta^2_{\text{parton-jet}} = \min_{\text{all combinations}} \sum_{partons, jets} [\triangleleft(\vec{p}_{jet}, \vec{p}_{parton})]^2$$

Distance between parton level and detector level jets

Signal events

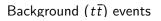
Background $(t\bar{t})$ events



For significant fraction of events detector-level jets do not correspond to the fermion configuration!

A.F.Żarnecki (University of Warsaw)

Distance between parton level and detector level jets

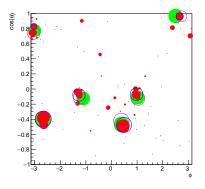

Background $(t\bar{t})$ events

For significant fraction of events detector-level jets do not correspond to the fermion configuration! \Rightarrow mass reconstruction significantly worse

Distance between parton level and particle level jets (no detector involved)

Signal events

In most cases, information about the partonic final state is already lost on particle level! How can we suppress such event?!



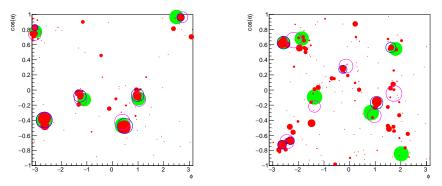
Clustering quality estimate

Examples Reconstructed PFOs and the clustering results

Event with $\Delta^2_{parton-jet}=0.03$

- partons
- 🗕 PFOs
- 🔵 LCFIPlus jets (Valencia)
- 🔵 anti-*k*_ jets

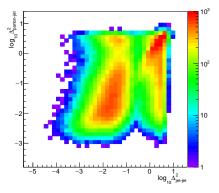
size reflects energy (log scale)


Clustering quality estimate

Examples Reconstructed PFOs and the clustering results

Event with $\Delta^2_{\text{parton-jet}}=0.03$

Event with $\Delta^2_{\text{parton-jet}}=3.80$

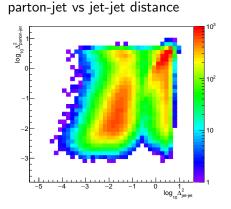


Events with "bad matching" seem to be related to higher order QCD corrections/Parton Shower...

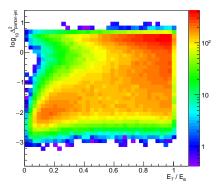
Comparison of jet algorithms

Distance between different jet can be used to estimate "event quality"

parton-jet vs jet-jet distance



Valencia vs angular clustering

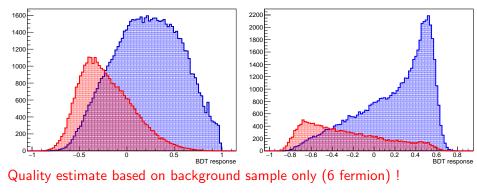

Comparison of jet algorithms

Distance between different jet can be used to estimate "event quality" one can also look at other jet related variables...

Valencia vs angular clustering

parton-jet distance vs energy ratio

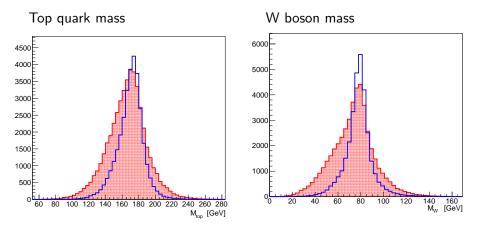
Energy ratio of 7th to 6th jet


BDT response

Separate BDTs were trained to estimate event quality for hadronic and semi-leptonic events, based on comparison of different jet algorithms

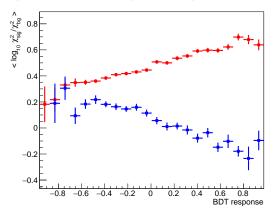
Response distribution for "good" ($\Delta^2 < 0.6)$ and "bad" ($\Delta^2 > 0.6)$ events

Hadronic sample (6 jet)


Semi-leptonic sample (4 jet)

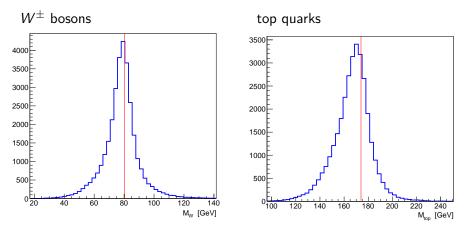
Influence on kinematic fit

Comparison of invariant mass distributions for BDT < 0.2 and BDT > 0.2Kinematic fit result for hadronic sample (after preselection)



Influence on signal/background discrimination

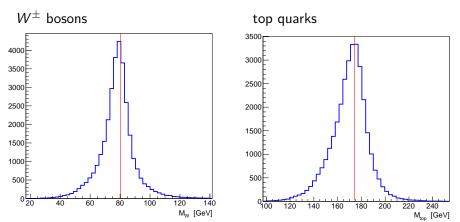
Average χ^2 ratio for signal and background hypothesis, for signal (FCNC) and background (6 fermion) samples



Reconstructed masses

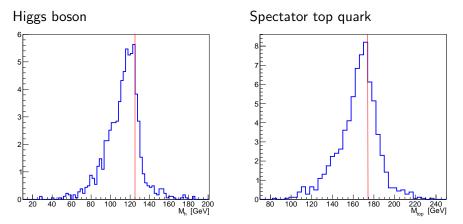
background events, hadronic decays

Without energy correction


A.F.Żarnecki (University of Warsaw)

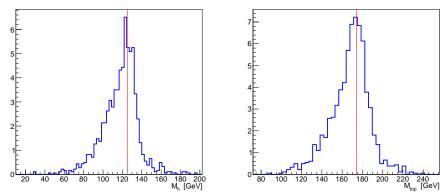
Reconstructed masses

background events, hadronic decays


With 5% energy correction for b jets

Reconstructed masses signal events, hadronic decays

Without energy correction



Reconstructed masses signal events, hadronic decays

With 5% energy correction for b jets

Higgs boson

Spectator top quark

Expected events in hadronic (6 jet) channel For 500 fb^{-1} , assuming $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) = 10^{-3}$ for signal

	Expected	events	Efficiency		
Generator level	tī (SM)	Signal	tt (SM)	Signal	
All events	410'000	819	100%	100%	
hadronic events	170'000	543	41%	66%	

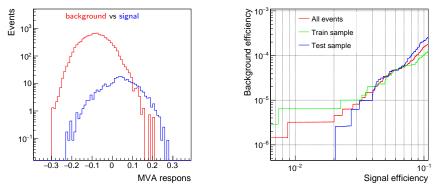
Preselection cuts

$BDT_{had} > -0.07$	174'000	543	42%	66%
3 <i>b</i> jets tagged ($b_{tag} > 0.4$)	14'100	320	3.4%	39%
c jet tagged $(b_{tag}+c_{tag}>0.4)$			2.5%	36%

Preselection cuts improve signal to background ratio by order of magnitude

Expected events in semi-leptonic (4 jet + lepton) channel For 500 fb^{-1} , assuming $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) = 10^{-3}$ for signal

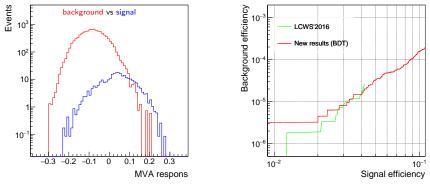
	Expected events		Efficie	ency
Generator level	tt (SM)	Signal	tt (SM)	Signal
All events	410'000	819	100%	100%
semi-leptonic events	191'100	276	47%	34%


Preselection cuts

$BDT_{had} < -0.07, BDT_{lep} > -0.05$	178'400	255		31%
	115'200	157	28%	19%
3 <i>b</i> jets tagged ($b_{tag} > 0.4$)	4'690	84.8	1.1%	10%
c jet tagged ($b_{tag} + c_{tag} > 0.4$)	1'516	65.9	0.37%	8.0%

Hadronic channel

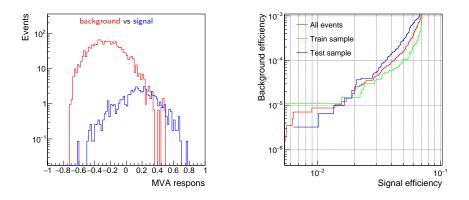
Final signal event selection based on BDT algorithm response



Similar results for train and test samples \Rightarrow no overtraining

Hadronic channel

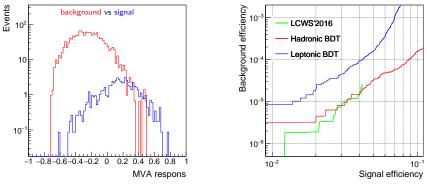
Final signal event selection based on BDT algorithm response Results compared to LCWS'2016 (cut based)



Results based on BDT similar to cut based (?!)

Semi-leptonic channel

Final signal event selection based on BDT algorithm response


Note: "Signal efficiency" includes top branching ratio !

Semi-leptonic channel

Final signal event selection based on BDT algorithm response

compared to hadronic channel

Semi-leptonic channel suppressed by factor of ~ 3 (21% vs 68%) Note: "Signal efficiency" includes top branching ratio !

Updated results

Final limits

Limits resulting from the new BDT⁵ analysis (500 fb⁻¹ @ 380 GeV)

hadronic channel

 $BR < 1.7 \cdot 10^{-4}$

leptonic channel

 $BR < 3.8 \cdot 10^{-4}$

combined

 $BR < 1.6 \cdot 10^{-4}$

Limits calculated from the test event sample! (half of statistics)

Total selection efficiency about 10% (7% hadronic + 3% semi-leptonic)

FCNC top decays $t \rightarrow ch$ with CLIC at 380 GeV

Updated results for 380 GeV, including hadronic and semi-leptonic channel Improved identification of events with "wrong" jet clustering Analysis based on multiple BDT classifications

Expected combined limit at 500 fb^{-1}

 $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) < 1.6 \cdot 10^{-4}$

FCNC top decays $t \rightarrow ch$ with CLIC at 380 GeV

Updated results for 380 GeV, including hadronic and semi-leptonic channel Improved identification of events with "wrong" jet clustering Analysis based on multiple BDT classifications

Expected combined limit at 500 fb^{-1}

 $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) < 1.6 \cdot 10^{-4}$

Some checks still to be done, but results seem stable

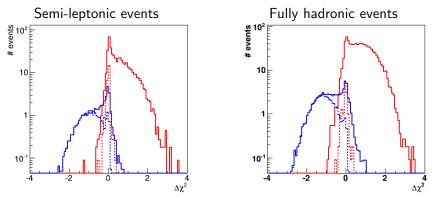
 \Rightarrow most likely they are final

Parton Level study

Very simplified detector description

- detector acceptance for leptons: $|\cos \theta_l| < 0.995$
- detector acceptance for jets: $|\cos \theta_i| < 0.975$
- jet energy smearing: $\sigma_E = \begin{cases} \frac{S}{\sqrt{E}} & \text{for } E < 100 \, GeV \\ \frac{S}{\sqrt{100 \, GeV}} & E > 100 \, GeV \end{cases}$

with S = 30%, 50% and 80% [GeV^{1/2}]

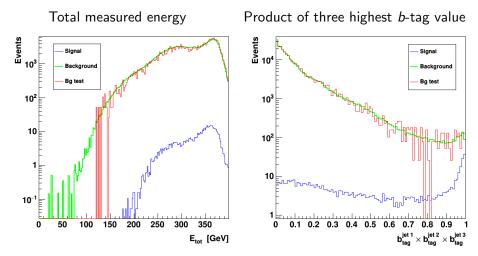

• *b* tagging (misstagging) efficiencies: (as expected for LCFI+)

Scenario	b	С	uds
Ideal	100%	0%	0%
Α	90%	30%	4%
В	80%	8%	0.8%
С	70%	2%	0.2%
D	60%	0.4%	0.08%

Parton Level study

Signal selection

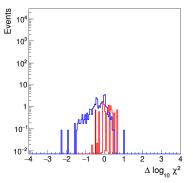
Difference of $\log_{10} \chi^2$ for two hypothesis, for signal and background events Before (solid) and after (dashed) other selection cuts

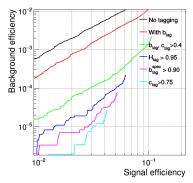


500 GeV, jet energy resolution 50%, 70% *b*-tagging efficiency Background rejection strongly depends on the detector performance

Control plots

Comparing signal sample with full background and test samples.


LCWS'2016 results


Signal-background discrimination

Based on the cut on the difference of $\log_{10} \chi^2$ for two hypothesis Events with "good" fit of signal hypothesis ($\chi^2_{sig} < 14$, $|\Delta M_{top}| < 45$ GeV)

 $\Delta \log_{10} \chi^2$ distribution for signal and background

Background vs signal efficiency after subsequent cuts

normalized to all decay channels

Valencia algorithm Phys Lett B 750 (2015) 95

New, robust, background resistant jet reconstruction algorithm. Distance criterion based on energy and polar angle:

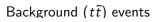
$$d_{ij} = \min\left(E_i^{2\beta}, E_j^{2\beta}\right) \frac{(1 - \cos\theta_{ij})}{R^2} \quad \text{and} \quad d_{iB} = E_i^{2\beta} \sin^{2\beta}\theta_{iB}$$

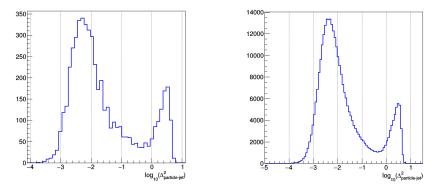
This definition was implemented in LCFI+ package (v00-07)

VLC algorithm arXiv:1607.05039

Extension of Valencia algorithm, with more general distance definition:

$$d_{ij} = 2\min\left(E_i^{2\beta}, E_j^{2\beta}\right) \frac{(1 - \cos\theta_{ij})}{R^2} \quad \text{and} \quad d_{iB} = E_i^{2\beta} \sin^{2\gamma}\theta_{iB}$$


This definition was implemented in FastJet (ValenciaPlugin)


There is factor of 2 in R definition between VLC with $\beta = \gamma$ and Valencia !

Jet matching

Distance between particle level jets and detector level jets

Signal events

For most events reconstructed detector-level jets follow closely the particle level configuration...

Kinematic fit

χ^2 definition

Using mass ratios to reduce influence of mass correlations:

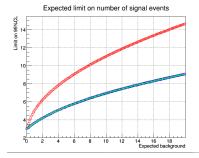
• signal hypothesis use also top boost as additional constrain

0

$$\begin{split} \chi_{sig}^2 &= \left(\frac{M_{bqq} - m_t}{\sigma_t}\right)^2 + \left(\frac{M_{bbc} - m_t}{\sigma_t}\right)^2 + \left(\frac{\frac{E_{bqq}}{M_{bqq}} - \gamma_t}{\sigma_\gamma}\right)^2 + \left(\frac{\frac{E_{bbc}}{M_{bbc}} - \gamma_t}{\sigma_\gamma}\right)^2 \\ &+ \left(\frac{\frac{M_{qq}}{M_{bqq}} - \frac{m_W}{m_t}}{\sigma_R_W}\right)^2 + \left(\frac{\frac{M_{bb}}{M_{bbc}} - \frac{m_h}{m_t}}{\sigma_R_h}\right)^2 \end{split}$$

• similar for background hypothesis ($t\bar{t}$ hadronic decays)

$$\chi_{bg}^2 = \dots + \left(\frac{\frac{M_{qq}}{M_{bqq}} - \frac{m_W}{m_t}}{\sigma_{R_W}}\right)^2 + \left(\frac{\frac{M_{bq}}{M_{bqq}} - \frac{m_W}{m_t}}{\sigma_{R_W}}\right)^2$$


Limit setting

New limit definition

Expected 95% C.L. limits calculated for the parton-level study and for LCWS'2016 results were too conservative! Calculated as the BR value which can be excluded in 95% of experiments...

Expected limits should be defined as the average 95% C.L. limit resulting from the background-only experiments this value will be excluded in (about) 50% of experiments

Limit setting

New limit definition

Expected 95% C.L. limits calculated for the parton-level study and for LCWS'2016 results were too conservative! Calculated as the BR value which can be excluded in 95% of experiments...

Expected limits should be defined as the average 95% C.L. limit resulting from the background-only experiments this value will be excluded in (about) 50% of experiments

 \Rightarrow previous limits too strong by a factor of about 1.5

Updated limit from LCWS'2016 analysis:

 $BR(t \rightarrow ch) \times BR(h \rightarrow b\bar{b}) ~<~ 1.7 \cdot 10^{-4}$