

Outline

- 2 Experiments
- 3 Higgs physics
- Top-quark physics
- 5 BSM physics
- 6 Conclusions

Focus on selected highlights, for more information refer to:

- ILC inputs to the European Strategy for Particle Physics Update + ILD contribution
- CLIC input to the European Strategy for Particle Physics Update

International Linear Collider

Technical Design (TDR) completed in 2013

arXiv:1306.6328

- superconducting accelerating cavities
- 250 500 GeV c.m.s. energy (baseline), 1 TeV upgrade possible
- footprint 31 km
- polarisation for both e^- and e^+ (80%/30%)

E-XFEL first X-ray laser flashes in May 2017

Largest ever accelerator prototype: ILC-250 arm in 1:7 scale (17.5 GeV)

All construction issues verified. Full industrialization of cavity production.

A.F.Żarnecki (University of Warsaw)

Physics potential of ILC and CLIC

International Linear Collider

arXiv:1903.01629

Fw

ILC-250

The discovery of a Higgs Boson with a mass of 125 GeV opened the possibility of reducing ILC cost by starting at a centre-of-mass energy of 250 GeV with the possibility of future upgrades to 500 GeV or even 1 TeV. arXiv:1711.00568

arXiv:1903.01629

International Linear Collider

Baseline running scenario for staged ILC construction

arXiv:1903.01629

Total integrated luminosities same as in original H-20 proposal for ILC-500!

Candidate ILC site in Kitakami

A.F.Żarnecki (University of Warsaw)

Physics potential of ILC and CLIC

Candidate ILC site in Kitakami

Compact Linear Collider

Conceptual Design (CDR) presented in 2012

CERN-2012-007

- high gradient, two-beam acceleration scheme
- staged implementation plan with energy from 380 GeV to 3 TeV
- footprint of 11 to 50 km
- e⁻ polarisation (80%)

For details refer to arXiv:1812.07987

Compact Linear Collider

Novel acceleration technology required a lot of fundamental research Studies completed at CLIC Test Facility 3 (CTF3: June 2003 - Dec 2016)

All key elements of the design verified

CTF3 test results

Drive beam bunch formation

current of 28 A reached

Phase locking for acceleration

50 fs timing accuracy reached

Steinar Stapnes, CLIC Workshop, January 2019

CTF3 test results

Energy gain in single cavity

15-Jul-2011

Energy at screen center= 212.25 MeV

Accelerating gradient for test cavities

Steinar Stapnes, CLICdp Workshop, August 2019

CLIC running scenario

- Fw

new baseline: CERN-2018-005-M

Three construction stages (each 7 to 8 years of running) for an optimal exploitation of its physics potential

• $\sqrt{s} = 380 \text{ GeV}$ with 1 ab^{-1} including 100 fb⁻¹ at t \overline{t} threshold focus on precision Standard Model physics,

optimised for Higgs boson and top-quark measurements

CLIC running scenario

new baseline: CERN-2018-005-M

Three construction stages (each 7 to 8 years of running) for an optimal exploitation of its physics potential

• $\sqrt{s} = 380 \text{ GeV}$ with 1 ab^{-1} including 100 fb⁻¹ at tt threshold focus on precision Standard Model physics, optimised for Higgs boson and top-quark measurements

•
$$\sqrt{s} = 1.5 \text{ TeV}$$
 with 2.5 ab⁻¹

• $\sqrt{s} = 3$ TeV with 5 ab^{-1}

focus on direct and indirect BSM searches,

but also additional Higgs boson and top-quark studies

LC comparison personal view

	ILC	CLIC
Technology	cold	worm
Acc. gradient	35 MV/m	72/100 MV/m
Initial energy	250 GeV	380 GeV
Final energy	500 GeV	3 TeV
Bunch spacing	300 ns	0.5 ns
Polarisation	e^- / e^+	e ⁻
Project timeline	22 years	27 years
Total luminosity	6.2 ab^{-1}	$8.5 \ ab^{-1}$

ILC: higher precision at low energies, CLIC: prospects for going $> 1~{\rm TeV}$ Running scenarios can be modified, depending on physics...

A.F.Żarnecki (University of Warsaw)

Physics potential of ILC and CLIC

Comparison to other project

- $\bullet~t\bar{t}$ threshold luminosity "per IP" similar for ILC/CLIC and FCC-ee
- much smaller construction cost and power consumption for LC!
- CLIC is the only e^+e^- project that can go into the TeV domain

Particle Flow concept

Jet energy resolution crucial for precision physics and background rejection

Typical jet composition:

- 60% charged particles
- 30% photons
- 10% neutral hadrons

Jet energy poorly measured in calorimeters, large flactuations.

But we can measure:

- charged particle momenta very precisely,
- photon energy quite well,
- only neutral hadrons are a problem...

Detector Requirements

- "Particle Flow" concept: try to measure energy particle by particle
- Single particle reconstruction/ID ⇒ high calorimeter granularity

Detector Requirements

- "Particle Flow" concept: try to measure energy particle by particle
- Single particle reconstruction/ID \Rightarrow high calorimeter granularity
- Best energy estimate for charged particles
- \Rightarrow precise momentum measurement

Detector Requirements

- "Particle Flow" concept: try to measure energy particle by particle
- Single particle reconstruction/ID \Rightarrow high calorimeter granularity
- Best energy estimate for charged particles
- ⇒ precise momentum measurement
- Very efficient flavour tagging \Rightarrow high precision vertex detector

Detector Requirements

- "Particle Flow" concept: try to measure energy particle by particle
- Single particle reconstruction/ID \Rightarrow high calorimeter granularity
- Best energy estimate for charged particles
- \Rightarrow precise momentum measurement
- Very efficient flavour tagging \Rightarrow high precision vertex detector

Missing energy measurement ⇒ hermecity

 $e^+e^- \rightarrow t\bar{t} \rightarrow 4i + l + \nu$

Benchmark reaction

Detector Requirements same for ILC and CLIC

- Track momentum resolution: $\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$
- Impact parameter resolution: $\sigma_d < 5\mu m \oplus 10\mu m \frac{1 \text{ GeV}}{p \sin^{3/2} \Theta}$
- Jet energy resolution: $\sigma_E/E = 3 4\%$ (for highest jet energies)
- Hermecity: $\Theta_{min} = 5 \text{ mrad}$

Two detailed ILC detector concepts:

New CLIC detector model: CLICdet

12.8 m

Based on detailed simulation studies, detector R&D and beam tests.

Optimised for Particle Flow reconstruction

Full exploitation of physics potential from 380 GeV to 3 TeV

For details refer to arXiv:1812.07337

Track momentum resolution:

$$\sigma_{1/p} < 5 \cdot 10^{-5} \text{ GeV}^{-1}$$

for high momentum tracks

 p_T resolution for muons:

Jet energy resolution:

$$\sigma_E/E = 3 - 4\%$$

for high jet energies

Expected jet energy resolution based on particle flow reconstruction

Impact parameter resolution:

$$\sigma_d < 5 \mu m \oplus 10 \mu m \; rac{1 \; {
m GeV}}{
m \textit{p} \; \sin^{3/2} \Theta}$$

Crucial for efficient flavour tagging b-tagging @ ILC

b-tagging @ CLIC

A.F.Żarnecki (University of Warsaw)

25 / 62

Impact parameter resolution:

$$\sigma_d < 5 \mu m \oplus 10 \mu m \; rac{1 \; {
m GeV}}{
m \textit{p} \; \sin^{3/2} \Theta}$$

Crucial for efficient flavour tagging b-tagging @ ILC

Higgs production

Precision Higgs couplings measurements at 250/380 GeV

Profit from combining two production channels:

⇒ model independent analysis

Event reconstruction

In the ZH production channel (dominating below 450 GeV) we can use "Z-tagging" for unbiased selection of Higgs production events

We avoid any dependence on the Higgs decay channel!

Decay reconstruction

CLIC study: arXiv:1608.07538

Recoil mass reconstruction in $e^+e^- \rightarrow ZH \Rightarrow$ unbiased selection

Clean environment \Rightarrow unambiguous separation of different decay channels Efficient b and c tagging:

Prospects for direct measurement of $BR(H \rightarrow c\overline{c})$ and $BR(H \rightarrow gg)$

Higgs couplings

ILC/CLIC sensitivity to the different Higgs boson couplings compared with the HL-LHC projections

Model-dependent analysis

arXiv:1812.02093

Sub-percent level precision already at the first energy stages

Higgs couplings

$\mathsf{ILC}/\mathsf{CLIC}$ sensitivity to the different Higgs boson couplings

Model-independent analysis

BSM sensitivity

Precision of e^+e^- colliders allows to distinguish the SM expectations and other models from the global analysis of the Higgs boson couplings

Significant (> 5σ) differences between most scenarios already at 250 GeV

arXiv:1710.07621

BSM sensitivity

Precision of e^+e^- colliders allows to distinguish the SM expectations and other models from the global analysis of the Higgs boson couplings

All considered BSM scenarios can be identified at $\geq 5\sigma$ after full ILC programme (H-20)

arXiv:1710.07621

Invisible decays

Recoil mass technique results also in high sensitivity to invisible Higgs boson decays

Expected 95% C.L. limit for $2 ab^{-1}$ collected at 250 GeV ILC: 0.23% Yu Kato @ EPS-HEP 2019

Higgs physics

Higgs production

New channels open above 500 GeV

- top Yukawa coupling
- Higgs self-coupling

Even more Higgs bosons produced at TeV energies

• rare decay channels

Higgs self-coupling

Estimated precision on the determination of Higgs self-coupling $\boldsymbol{\lambda}$

500 GeV optimal for measurement in ZHH channel: 27% uncertainty expected at ILC with 4 ab^{-1} assuming the SM with only the trilinear Higgs coupling free

arXiv:1903.01629

arXiv:1901.05897

Higgs self-coupling

Extracted from the measurement of double Higgs boson production at CLIC, at energies of $\sqrt{s} = 1.5$ and 3 TeV.

Both trilinear Higgs self-coupling and the quartic HHWW coupling can be constrained.

 $\delta \lambda / \lambda = -7\% / + 11\%$ (68% C.L.)

Looking for BSM effects

 5σ CLIC discovery range for Higgs compositeness compared to expected HL-LHC 2σ exclusions

New physics effects can be discovered via precision Higgs measurements

Processes of interest

Top pair-production at and above the threshold (350 GeV)

- top-quark mass
- electroweak couplings
- rare decays

Processes of interest

Top pair-production at and above the threshold (350 GeV)

- top-quark mass
- electroweak couplings
- rare decays

Additional processes open at high energies

- top Yukawa coupling
- CP properties
- BSM constraints

Top pair production cross section around threshold:

resonance-like structure corresponding to narrow $t\bar{t}$ bound state.

Very sensitive to top properties and model parameters:

Significant cross section smearing due to luminosity spectra and ISR

Smearing due to luminosity spectra can be reduced by using dedicated running configuration

Precision top mass measurement possible already with 100-200 fb⁻¹ Baseline scan scenario: 10 cross section measurements, 10-20 fb⁻¹ each

Precision top mass measurement possible already with 100-200 fb⁻¹ Baseline scan scenario: 10 cross section measurements, 10-20 fb⁻¹ each

About 20 MeV uncertainty on mass expected from mass and width fit (2D)

Precision top mass measurement possible already with 100-200 fb^{-1} Baseline scan scenario: 10 cross section measurements, 10-20 fb^{-1} each

About 20 MeV uncertainty on mass expected from mass and width fit (2D) However, α_s and top-quark Yukawa coupling need to be constrained from independent measurements. Total systematic uncertainty ~ 50 MeV.

Direct measurement

From reconstruction of hadronic top-quark decays

Statistical precision $\sim 30\,\text{MeV}$

Needs excellent control of JES Large theoretical uncertainties

 $e^+e^- \rightarrow t \ \overline{t} + \gamma_{_{ISR}}$

Threshold from reconstructed $t\bar{t}$ invariant mass distribution

M. Boronat et al., *Top quark mass measurement in radiative events at electron-positron colliders*, to be submitted.

Physics potential of ILC and CLIC

 $e^+e^- \rightarrow t \ \overline{t} + \gamma_{_{ISR}}$

Threshold from reconstructed $t\bar{t}$ invariant mass distribution

M. Boronat et al., *Top quark mass measurement in radiative events at electron-positron colliders*, to be submitted.

 $e^+e^- \rightarrow t \ \overline{t} + \gamma_{_{ISR}}$

Threshold from reconstructed $t\bar{t}$ invariant mass distribution

 $e^+e^- \rightarrow t \ \overline{t} + \gamma_{_{ISR}}$

Threshold from reconstructed $t\bar{t}$ invariant mass distribution

Reconstructed $c\gamma$ invariant mass after BDT selection

arXiv:1807.02441

very strongly suppressed in SM (CKM+GIM)

Limits expected for 1000 fb^{-1} collected at 380 GeV

 $\mathsf{BR}(t\to c\gamma) \ < \ 2.6\cdot 10^{-5}$

Response distribution of the BDT for the t \rightarrow cH selection

very strongly suppressed in SM (CKM+GIM)

Limits expected for 1000 fb^{-1} collected at 380 GeV

 $\mathsf{BR}(t\to c\gamma) \ < \ 2.6\cdot 10^{-5}$

 $\begin{array}{ll} \mathsf{BR}(t \rightarrow \mathsf{cH}) \times \\ \\ \mathsf{BR}(\mathsf{H} \rightarrow \mathsf{b}\overline{\mathsf{b}}) &< 8.8 \cdot 10^{-5} \end{array}$

arXiv:1807.02441

95% C.L. limits on BR(t \rightarrow cF) as a function of DM particle mass

arXiv:1807.02441

very strongly suppressed in SM (CKM+GIM)

Limits expected for 1000 fb^{-1} collected at 380 GeV

 $\mathsf{BR}(t\to c\gamma) \ < \ 2.6\cdot 10^{-5}$

 $\begin{array}{ll} \mathsf{BR}(t \to c\mathsf{H}) \times \\ \\ \mathsf{BR}(\mathsf{H} \to b\overline{b}) &< 8.8 \cdot 10^{-5} \end{array}$

Comparison of expected limits:

For channels involving charm quark, only FCC-hh can compete with LC

Top-quark pair production

Pair production provides direct access to top electroweak couplings

Possible higher order corrections ⇒ sensitive to "new physics" contribution

New physics effects can be constrained through measurement of:

- total cross-section
- forward-backward asymmetry
- helicity angle distribution in top decays

Additional constraints obtained by:

- using electron (and positron) beam polarisation
- measurements at different \sqrt{s}

Top EW couplings

Can be constrained from the measurements of top-quark pair-production cross sections and angular distributions

Top EW couplings

Expected sensitivity to electroweak couplings of the top quark

CP-conserving form factors

CP-violating form factors

arXiv:1710.06737

Looking for BSM effects

Global EFT analysis of CLIC measurements involving top quark Results based on statistically optimal observables arXiv:1807.02441

High energy CLIC can reach "new physics" scales in the 100 TeV range

A.F.Żarnecki (University of Warsaw)

Physics potential of ILC and CLIC

BSM physics

Two complementary approaches

Strong limits expected at HL-LHC for many scenarios.

Complementary searches at LC:

- direct searches models with weak couplings or soft signatures
- indirect searches high sensitivity

Search for new scalars

Many BSM models introduce extended Higgs sectors. New scalars could be light, if their couplings to SM particles are small.

Search for production and invisible decays of new scalars: arXiv:1903.01629

Search for new scalars

Many BSM models introduce extended Higgs sectors. New scalars could be light, if their couplings to SM particles are small.

Search for production and invisible decays of new scalars: arXiv:1903.01629

Significant improvement of LEP limits @ 250 GeV

Search for new scalars

Many BSM models introduce extended Higgs sectors. New scalars could be light, if their couplings to SM particles are small.

Search for production and invisible decays of new scalars:

Inert Doublet Model

Scenarios with light inert scalars (DM candidates) still not excluded. Many such scenarios can be probed at future e^+e^- colliders

Benchmarks from arXiv:1809.07712

More details in a dedicated talk on Friday

Dark Matter searches

Production of Dark Matter possible in many scenarios. In e^+e^- collisions, we can detect invisible final states by studying the ISR photon spectra

Dark Matter searches

M.Habermehl, PhD Thesis

arXiv:1812.02093

Large background, but expected signal statistics is also large

Dark Matter searches

Comparison of extracted mediator mass limits

HE-LHC]		g _{DM} =1, g _Q =1
HL-LHC			tt+MET	
FCC-hh]	anu=1 an=1
LE-FCC				9DM-1,9Q-1
HE-LHC			Monoje	et
HL-LHC				
CLIC ₃₀₀₀				$g_{\text{DM}} \times g_E = 1$
CLIC ₃₈₀				
ILC] Monophoton	
FCC-ee				
CEPC			European Strategy	Scalar
.1	0.5	1		5 10
	$M_{\rm Me}$	diator [TeV]		

ILC/CLIC mass reach comparable with that of FCC-hh !!!

BSM physics

EFT analysis

Summary of the sensitivity to SM-EFT operators from a global analysis of corresponding observables for different future colliders

Scale / coupling [TeV]

ILC1000/CLIC3000 sensitivity exceeds that of FCC-hh

BSM physics

EFT analysis

Summary of the sensitivity to SM-EFT operators from a global analysis of corresponding observables for different future colliders

95% CL scale limits on 2-fermion 2-boson contact interactions

Scale / coupling [TeV]

CLIC3000 sensitivity matches that of FCC-ee/hh

BSM physics

Direct searches

For many models, in particular those with exotic scalar sector or new Higgs bosons, CLIC direct and indirect reach can exceed that of HL-LHC.

Indirect and direct sensitivities to new heavy scalar singlets:

Direct searches

Search for dark matter using "disappearing tracks" signature @ CLIC

high sensitivity thanks to precision tracking and low background conditions

Physics potential of ILC and CLIC personal view

High Energy linear e^+e^- colliders offer rich and diverse research programme:

- precise determination of Higgs couplings
- precise determination of top-quark mass and other properties
- stringent constraints on many BSM scenarios from indirect searches
- prospects for direct observation of new physics in many scenarios

Physics potential of ILC and CLIC personal view

High Energy linear e^+e^- colliders offer rich and diverse research programme:

- precise determination of Higgs couplings
- precise determination of top-quark mass and other properties
- stringent constraints on many BSM scenarios from indirect searches
- prospects for direct observation of new physics in many scenarios

As we have no hint for the actual BSM scenario, it is not possible to say which one, ILC or CLIC, has larger physics potential.

Physics potential of ILC and CLIC personal view

High Energy linear e^+e^- colliders offer rich and diverse research programme:

- precise determination of Higgs couplings
- precise determination of top-quark mass and other properties
- stringent constraints on many BSM scenarios from indirect searches
- prospects for direct observation of new physics in many scenarios

As we have no hint for the actual BSM scenario, it is not possible to say which one, ILC or CLIC, has larger physics potential.

The two projects are to a large extent complementary!

From the physics point of view we should build both!

ILC references

European Strategy submissions

۲	The International Collider. A Global Project s	ubmission, arXiv:1903.01629
۲	The International Collider. An European perspective	submission
٩	The ILD Detector at the ILC	submission
Other	reports	
۲	The International Linear Collider Technical Design Report Volume 3.II: Accelerator Baseline Design	arXiv:1306.6328
٩	The International Linear Collider Technical Design Report Volume 4: Detectors	arXiv:1306.6329
٩	The Potential of the ILC for Discovering New Particles	arXiv:1702.05333
٩	Physics Case for the 250 GeV Stage of the International Linea	r Collider arXiv:1710.07621
٩	The International Linear Collider Machine Staging Report 201	7 arXiv:1711.00568
٩	The role of positron polarization for the inital 250 GeV stage of the International Linear Collider	arXiv:1801.02840

CLIC references

arXiv:1812.07986

arXiv:1608.07538

arXiv:1812.07337

Formal European Strategy submissions

- The Compact Linear e⁺e⁻ Collider (CLIC): Accelerator and Detector, arXiv:1812.07987
- The Compact Linear e⁺e⁻ Collider (CLIC): Physics Potential,

Yellow Reports

CLIC 2018 Summary Report, CERN-2018-005-M,	arXiv:1812.06018
 CLIC Project Implementation Plan, CERN-2018-010-M, 	arXiv:1903.08655
 The CLIC potential for new physics, CERN-2018-009-M, 	arXiv:1812.02093
 Detector technologies for CLIC, CERN-2019-001, 	arXiv:1905.02520
Journal publications	
Top-quark physics at the CLIC electron-positron linear collider	arXiv:1807.02441

• Higgs physics at the CLIC electron-positron linear collider

Public CLICdp notes

- Updated CLIC luminosity staging baseline and Higgs coupling prospects arXiv:1812.01644
- CLICdet: The post-CDR CLIC detector model
 CLICdp-Note-2017-001
- A detector for CLIC: main parameters and performance

Physics potential of ILC and CLIC

Future collider timeline

International Linear Collider

H-20 running scenario for ILC500

arXiv:1506.07830

