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Motivation

Credit: Hitoshi Murayama

Top quark

the heaviest known elementary particle

Yukawa coupling to Higgs boson yt ∼ 1
⇒ key to understanding of EWSB

decays before hadronizing:
the only “naked” quark
⇒ test ground for QCD

large loop contributions to many
precision measurements

sensitive to many BSM scenarios
⇒ a window to “new physics”
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Colliders

International Linear Collider

Technical Design (TDR) completed in 2013 arXiv:1306.6328

superconducting accelerating cavities

250 – 500 GeV c.m.s. energy (baseline), 1 TeV upgrade possible

footprint 31 km

polarisation for both e− and e+ (80%/30%)
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Colliders

Compact LInear Collider

Conceptual Design (CDR) presented in 2012 CERN-2012-007

high gradient, two-beam acceleration scheme

staged implementation plan with c.m.s energy from 380 GeV to 3 TeV

footprint of 11 to 50 km

e− polarisation, e+ polarisation as possible upgrade

ongoing R&D and large-scale system tests
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Experiments

Detector Requirements

Jet reconstruction and jet
energy measurement based
on “Particle Flow” concept

Single particle reconstruction/ID
⇒ high calorimeter granularity

Best possible jet energy estimate
⇒ precise momentum measurement

Very efficient flavour tagging
⇒ high precision vertex detector

Missing energy measurement
⇒ hermecity

Benchmark reaction
e+e− → tt̄ → 6j
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⇒ high calorimeter granularity

Best possible jet energy estimate
⇒ precise momentum measurement

Very efficient flavour tagging
⇒ high precision vertex detector

Missing energy measurement
⇒ hermecity

Benchmark reaction
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Experiments

Detector Requirements

Track momentum resolution: σ1/p < 5 · 10−5 GeV−1

Impact parameter resolution: σd < 5µm ⊕ 10µm 1 GeV
p sin3/2 Θ

Jet energy resolution: σE/E = 3− 4% (highest jet energies)

Hermecity: Θmin = 5 mrad

Three detailed LC detector concepts:

ILD SiD CLIC
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Running scenarios

H-20 scenario for ILC
Initial stage
√
s = 500 GeV with 500 fb−1 in 3.7 years
√
s = 350 GeV with 200 fb−1 in 1.3 years
√
s = 250 GeV with 500 fb−1 in 3.1 years

Additional 3’500 fb−1 at
√
s = 500 GeV and 1’500 fb−1 at

√
s = 250 GeV

possible after luminosity upgrade (in about 11 years)

CLIC running scenario
Three construction stages (each 5 to 7 years of running)
√
s = 380 GeV with 500 fb−1 + 100 fb−1 at tt̄ threshold

selected as an optimal choice for precision Higgs and top physics
√
s = 1.5 TeV with 1500 fb−1

√
s = 3 TeV with 3000 fb−1
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Threshold scan

Top pair production cross section around threshold:
resonance-like structure corresponding to narrow tt̄ bound state.

Very sensitive to top properties and model parameters:

 [GeV]s
345 350 355

cr
os

s 
se

ct
io

n 
[p

b]

0

0.2

0.4

0.6

0.8

1

1.2

1.4
 threshold - 1S mass 174 GeVtt

TOPPIK NNLO

CLIC350 LS only

ISR only

CLIC350 LS+ISR

CLIC

top quark mass mt

top quark width Γt

strong coupling αs

top Yukawa coupling yt

Significant cross section smearing due to luminosity spectra and ISR
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Threshold scan

Precision top mass measurement possible already with 100 fb−1

ILC
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Threshold scan

Precision top mass measurement possible already with 100 fb−1
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T.Horiguchi et al., arXiv:1310.0563 K.Seidel et al., Eur. Phys. J. C73 (2013) 2530

statistical uncertainty 15–20 MeV
current theoretical uncertainties ∼40 MeV F.Simon ID:953 (poster)

+ parametric αs uncertainty ∼30 MeV (for today’s WA)

other uncertainties (backgrounds, spectra, etc.) on 10–20 MeV level

⇒ total uncertainty on the top mass ∼50 MeV feasible

top width can be extracted to 40 MeV A.Ishikawa @ TopLC’2015
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Top mass

Threshold scan
Main advantage: well defined from theoretical point of view
Total uncertainty on the top mass ∼50 MeV

Direct reconstruction K.Seidel et al., Eur. Phys. J. C73 (2013) 2530

Possible for all energies above the threshold (continuum)
High statistical precision: 80 MeV estimated for 100 fb−1 at 500 GeV
Suffers from significant theoretical uncertainties when converting to
particular mass scheme (as in LHC).

Radiative events P. Gomis @ ECFA LC Workshop 2016

At higher energies, we are still sensitive to tt̄ threshold in radiative events.
Threshold in ISR distribution ⇒ statistical precision ∼100 MeV feasible

Other considered methods

b-jet energy distribution (“one prong”) R.Franceschini @ TopLC’2016

event shape analysis (Thrust distribution) A.Hoang @ TopLC’2016
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Electroweak couplings

Pair production provides direct access to
top electroweak couplings

Possible higher order corrections
⇒ sensitive to “new physics” contribution

General coupling form:

Form factors can be constrained through measurement of:

total cross-section

forward-backward asymmetry

helicity angle distribution in top decays

for two polarization combinations: e−L e+
R and e−R e+

L
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Electroweak couplings

500 fb−1 @ 500 GeV

The cross section can be
measured to 0.5%

For semi-leptonic events
slope of the helicity angle
distribution measured to ∼4%

Polar Angle Spectrum requires
tighter selection cuts to reach
2% precision

Analysis can still be improved
by b-jet charge reconstruction

Detailed simulation of the ILD detector

M.S. Amjad, et al., Eur.Phys.J. C75 (2015) 512
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Electroweak couplings

500 fb−1 @ 500 GeV

The cross section can be
measured to 0.5%

For semi-leptonic events
slope of the helicity angle
distribution measured to ∼4%

Polar Angle Spectrum requires
tighter selection cuts to reach
2% precision

Analysis can still be improved
by b-jet charge reconstruction

ongoing study for ILD, S.Bilokin @ TopLC’2016

With improved particle ID one could also consider using hadronic decays
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Electroweak couplings

Expected coupling precision at LHC, ILC (500 GeV) and CLIC (380 GeV)
initial stage

CP conserving couplings CP violating couplings

IFIC-LAL Collaboration, M.Perello @ ECFA LC’2016
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Electroweak couplings

Already with 500 fb−1 top coupling determinated to ∼1% at ILC

⇒ significant constraints on different SM extensions

HL-LHC
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Electroweak couplings

Already with 500 fb−1 top coupling determinated to ∼1% at ILC

⇒ to profit from ILC luminosity upgrade we need to control
theoretical and experimental uncertainties to per mille level
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Yukawa coupling

Threshold scan A.Ishikawa @ TopLC’2015

Pair production at threshold: 9% Higgs exchange contribution
⇒ yt can be extracted with statistical uncertainty ∼6% (100 fb−1),

assuming αs can be constrained from other measurements
theoretical uncertainties ∼20%, need to be reduced

Higher energies (above 500 GeV)
Can be extracted from the measurement
of e+e− → tt̄H events
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Yukawa coupling

Threshold scan A.Ishikawa @ TopLC’2015

Pair production at threshold: 9% Higgs exchange contribution
⇒ yt can be extracted with statistical uncertainty ∼6% (100 fb−1),

assuming αs can be constrained from other measurements
theoretical uncertainties ∼20%, need to be reduced

Higher energies (above 500 GeV)
Can be extracted from the measurement
of e+e− → tt̄H events

Difficult measurement:

very low statistics

large backgrounds

requires perfect detector performance
(8 jets, 4 b-tags)
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Yukawa coupling

ILD simulation, 2×500 fb−1 at 500 GeV Y.Sudo @ TopLC’2016

tt̄H → 8j tt̄H → lν + 6j

⇒ statistical uncertainty of about 11% (6.4% with 4’000 fb−1)

Significant improvement when going to higher energies:

4% at 520 GeV and 3% at 540 GeV, with 4’000 fb−1

4-5% at 1 TeV (ILC) or 1.4 TeV (CLIC), with 1’500 fb−1

T.Price et al., Eur.Phys.J. C75 (2015) 309
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Yukawa coupling

ILD simulation, 2×500 fb−1 at 500 GeV Y.Sudo @ TopLC’2016

tt̄H → 8j Precision vs energy

⇒ statistical uncertainty of about 11% (6.4% with 4’000 fb−1)

Significant improvement when going to higher energies:
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Rare decays

In the Standard Model, FCNC top decays are strongly suppressed
(GIM mechanism + CKM suppression):

BR(t → c γ) ∼ 5 · 10−14, BR(t → c Z ) ∼ 1 · 10−14, BR(t → c H) ∼ 3 · 10−15

Significant enhancement possible in many “new physics” scenarios

Decay t→c H most interesting

enhancement up to 10−5−10−2

test of Higgs boson couplings

well constrained kinematics

seems most difficult for LHC
Run II: BR < 0.46%

HL-LHC: BR < 2 · 10−4

Full simulation study ongoing.

Parton level simulation results, 2HDM(III)
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Conclusions

Precise determination of top parameters is crucial for validation of the
Standard Model (or any alternative BSM theory)

Top threshold scan at the e+e− collider gives unique oportunities for
precise mass, width and coupling determination

Direct measurement of Yukawa and electroweak couplings require running
at higher beam energies

High precision and background suppression capabilities allow per mile level
measurements and searches for rare processes.

Even in clean e+e− environment, top event reconstruction is very
challenging. Stringent requirements are imposed on detector performance.

A.F.Żarnecki (University of Warsaw) Top physics at CLIC and ILC August 4, 2016 21 / 29



Thank you!
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Backup

Motivation
Precise determination of the top mass and other properties crucial for
Standard Model verification and indirect “new physics” searches
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Backup

Motivation
Top mass is a key to understanding of the SM stability

G.Degrassi et al., JHEP 1208 (2012) 098

uncertainty on the stability conditions dominated by top mass
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Backup

Future e+e− colliders
Expected luminosity of considered accelerators
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Backup

Top mass

LHC mass measurements
dominated by systematics

The mass extracted from
data-MC comparison
⇒ theoretical uncertainties
when converting to particular
mass scheme
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Backup

Top mass

M.Beneke et al., Phys. Rev. Lett. 115, 192001 (2015)
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The mass extracted from
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⇒ theoretical uncertainties
when converting to particular
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Threshold for

e+e− → tt̄

⇒ much better understood

theoretical error below 50 MeV feasible
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Threshold scan

Top pair production cross section around threshold:
resonance-like structure corresponding to narrow tt̄ bound state.

Very sensitive to top properties and model parameters:

top quark mass mt

top quark width Γt

strong coupling αs

top Yukawa coupling yt
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Threshold scan

Top pair production cross section around threshold:
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Backup

Continuum
Mass measurement above the threshold is still interesting

help to understand the ”different” masses better

try to see the running of the top quark mass

For CLIC running at 500 GeV K.Seidel et al., Eur. Phys. J. C73 (2013) 2530
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⇒ statistical precision of 80 MeV expected already with 100 fb−1
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Backup

Radiative events
At higher energies, we are still sensitive to tt̄
threshold in radiative events. We can determine
threshold position by reconstructing

s ′ = s

(
1− 2Eγ√

s

)
P. Gomis @ ECFA LC Workshop 2016

⇒ statistical precision of 100 MeV feasible full simulation study ongoing
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