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Motivation

Precise determination of the top properties crucial for
Standard Model verification and indirect “new physics” searches
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e.g. uncertainty on the SM stability conditions dominated by top mass
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Linear Colliders :

'-"l't: - Technical Design (TDR)
: completed in 2013

@ 500 GeV baseline
1 TeV upgrade possible

@ e~ and e polarization
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Linear Colliders

i:'f . Technical Design (TDR)
5 completed in 2013

@ 500 GeV baseline
1 TeV upgrade possible

@ e and e polarization

Conceptual design in 2012
Ongoing R&D towards TDR

o energy 380 GeV - 3 TeV

@ e~ polarization
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Circular Colliders Ve et

FCC-ee @ CERN

e 80-100 km ring

o focus on 250 GeV
= Higgs factory

@ 350 GeV possible

@ no polarization
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Circular Colliders Ve et

FCC-ee @ CERN

o 80-100 km ring

o focus on 250 GeV
= Higgs factory

@ 350 GeV possible

@ no polarization

CEPC @ China
@ 50 km ring

@ up to 240 GeV
= Higgs factory

tt threshold not reachable

SppC Collider Ring
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Detector Requirements

Jet reconstruction and jet @\?@7‘& ete” = tt — 6)
energy measurement based :
on “Particle Flow" concept ¢

High detector granularity booho
= reconstruction of single particles
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Detector Requirements

Jet reconstruction and jet @\?@7‘&
energy measurement based
on “Particle Flow" concept ¢

High detector granularity booho
= reconstruction of single particles

Excellent momentum measurement
= best possible jet energy estimate
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Detector Requirements

Jet reconstruction and jet @\?@7‘& ete” = tt — 6)
energy measurement based :
on “Particle Flow" concept ¢

High detector granularity booho
= reconstruction of single particles

Excellent momentum measurement
= best possible jet energy estimate

High precision vertex detector
= very efficient flavour tagging
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Experiments i

Detector Requirements

Jet reconstruction and jet Rﬁ@\lg/
energy measurement based

on “Particle Flow" concept O
b %,
High detector granularity ?“ %

= reconstruction of single particles

Excellent momentum measurement
= best possible jet energy estimate

High precision vertex detector
= very efficient flavour tagging

Hermecity
= missing energy measurement
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Experiments R

Detector Requirements

e Track momentum resolution: oy/, <5-107> GeV~!
@ Impact parameter resolution: o4 < 5um @ 10um ;J:lsif—3(3/\2/9
e Energy resolution: og/E =3 — 4%

@ Hermecity: O, =5 mrad

Three detailed LC detector concepts:
ILD
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Running scenarios

H-20 scenario for ILC

Initial stage
@ /s =500 GeV with 500 fb~! in 3.7 years
e /s = 350 GeV with 200 fb~! in 1.3 years
e /s =250 GeV with 500 fb~! in 3.1 years

+
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Running scenarios L

H-20 scenario for ILC
Initial stage

@ /s =500 GeV with 500 fb~! in 3.7 years
e /s = 350 GeV with 200 fb~! in 1.3 years
e /s =250 GeV with 500 fb~! in 3.1 years

Additional 3'500 fb~! at y/s = 500 GeV and 1'500 fb~! at /s = 250 GeV
possible after luminosity upgrade (in about 11 years)
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Running scenarios e

H-20 scenario for ILC
Initial stage

@ /s =500 GeV with 500 fb~! in 3.7 years
e /s = 350 GeV with 200 fb~! in 1.3 years
e /s =250 GeV with 500 fb~! in 3.1 years

Additional 3'500 fb~! at y/s = 500 GeV and 1'500 fb~! at /s = 250 GeV
possible after luminosity upgrade (in about 11 years)

CLIC runnning scenario
Three construction stages:

e /s =380 GeV with 500 fb~! - initial stage

selected as an optimal choice for precision Higgs and top physics
e /s = 1.4 TeV with 1500 fb~!
e /s =3 TeV with 2000 fb~!
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Threshold scan

Top pair production cross section around threshold
Resonance-like structure corresponding to tt bound state
Very sensitive to top properties and model parameters:
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Threshold scan Ve

Top pair production cross section around threshold
Resonance-like structure corresponding to tt bound state
Very sensitive to top properties and model parameters:
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Threshold scan Ve

Top pair production cross section around threshold
Resonance-like structure corresponding to tt bound state
Very sensitive to top properties and model parameters:
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Threshold scan

Significant cross section smearing due to luminosity spectra and ISR

Luminosity spectra Measured cross section
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Threshold scan

Precision top mass measurement possible already with 100 fb—!
@ statistical uncertainty 10-30 MeV

@ experimental systematics ~30 MeV (dominated by beam energy)

o theoretical uncertainties: 20 MeV possible (currently ~100 MeV)
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Yukawa coupling =

Threshold scan
y: can be extracted with statistical uncertainty ~6% (100 fb~1),
if as constrained from other measurements. Model dependent!

Higher energies
Can be extracted from the measurement of et e~ — ttH events

+ t
c e+
K
_ Y/Z _ Y/Z
€ t e

Model independent!
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Yukawa coupling Vo s

Threshold scan
y: can be extracted with statistical uncertainty ~6% (100 fb~1),
if as constrained from other measurements. Model dependent!

Higher energies
Can be extracted from the measurement of et e~ — ttH events

+ t
c

- V/Z -
e t
Very difficult measurement:
o low statistics
o large backgrounds

@ require prefect detector performance
(8 jets, 4 b-tags)

+
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Yukawa coupling

Results of ILD simulation (500 fb~! at 500 GeV)

ttH — 8j ttH — v + 6/
6 4c
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= statistical uncertainty of about 17% expected (6% with 4’000 fb~1!)
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Yukawa coupling

Results of ILD simulation (500 fb~! at 500 GeV)
ttH — 8j ttH — lv + 6§

E [ tfH(tT6q,hbb)
5C Il ttH(other)

4c
E [ tiH(tfindg,hbb)
50 tfH(other)

Number of Events / 5 GeV
w

Number of Events / 5 GeV
N

]

|| SRR SR 0 e
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Higgs candidate Mjj (GeV) Higgs candidate Mjj (GeV)

= statistical uncertainty of about 17% expected (6% with 4’000 fb~1!)

Significant improvement when going to higher energies:
e 7% with 500 fb~! at 550 GeV (!)
@ 4.3-45% with 1.5 ab=! at 1 TeV (ILC) or 1.4 TeV (CLIC)
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Pair production provides direct access to
top electroweak couplings

Possible higher order corrections
= sensitive to “new physics” contribution

General coupling form:

— . O v s v
TL*(K,q,q) = —ie {% (B (k) +16Fa(k) + 5 (@ + 2 (iF () + “ran’i(kz))}

+
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Electroweak couplings oS

Pair production provides direct access to
top electroweak couplings

Possible higher order corrections
= sensitive to “new physics” contribution

General coupling form:

IX(k?,q,q) = —ie {% (FV (K?) + s F5 (k) + q +9)* (iFy (k) + %Fu(kz))}

5 non-trivial form factors can be constrained through measurement of:
@ total cross-section
o forward-backward asymmetry

@ helicity angle distribution in top decays

+

. . . . ) — + —
for two polarization combinations: e, e; and eg ¢/
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Electroweak couplings

Already the initial ILC running will allow for top coupling determination
with 1-2% accuracy

Z | 72
LHC14, 3000 fb 891/97
From Phys.Rev.D63 (2006) 034016

( 20% 1
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1% T —
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Composite Top
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Rare decays s

In the Standard Model, FCNC top decays are strongly suppressed
(GIM mechanism + CMK suppression):

BR(t — cv) ~ 5- 1071

BR(t - cZ) ~ 1-107%
BR(t — cg) ~ 5-1071'2
BR(t — cH) ~ 3-107%°

Top physics at future ete™ colliders September 8, 2015 17/

A.F.Zarnecki (University of Warsaw)



Rare decays -

In the Standard Model, FCNC top decays are strongly suppressed
(GIM mechanism + CMK suppression):

BR(t — cv) ~ 5- 1071

BR(t - cZ) ~ 1-107%

BR(t -+ cg) ~ 5-10712

BR(t — cH) ~ 3-107%°

Significant enhancement possible in many “new physics” scenarios,
due to modified couplings or loop contributions on new particles
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Rare decays [

In the Standard Model, FCNC top decays are strongly suppressed
(GIM mechanism + CMK suppression):

BR(t — cv) ~ 5- 1071

BR(t - cZ) ~ 1-107%

BR(t -+ cg) ~ 5-10712

BR(t — cH) ~ 3-107%°

Significant enhancement possible in many “new physics” scenarios,
due to modified couplings or loop contributions on new particles

Decay t— ¢ H considered in the presented study:
@ enhancement up to 107> — 10~2 possible
@ test of Higgs boson couplings
@ well constrained kinematics
@ seems to be most difficult for LHC

Two Higgs Doublet Model (2HDM) type Il used as a test scenario.

+ -
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Rare decays =

Event selection: tt final state
“Signal” top: t — cH, followed by Higgs decay to bb = 2 b tags
“Spectator” top: t — bW (dominant SM decay) = 1 b tag

Considered final states (resulting from “spectator” W= decay channels):
@ semileptonic: 4 jets (3 b-tags) + lepton + missing p;
o fully hadronic: 6 jets (3 b-tags), no leptons, no missing p;

+
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Rare decays -

Event selection: tt final state

“Signal” top: t — cH, followed by Higgs decay to bb = 2 b tags
“Spectator” top: t — bW (dominant SM decay) = 1 b tag

Considered final states (resulting from “spectator” W= decay channels):
@ semileptonic: 4 jets (3 b-tags) + lepton + missing p;
o fully hadronic: 6 jets (3 b-tags), no leptons, no missing p;

Background
Kinematic constraints allow for selection of high purity tt sample
Main background expected from:

@ top decays followed by CKM suppressed W~ — bc

@ miss-reconstruction of standard tt events
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Signal selection
Compare two hypothesis:

@ background hypothesis

Xbg = <M"”’ — mt>2+<M”’ - ’"W>2+<M""q - mr>2+</\4bq—rm>2
€ Ot lep OW lep Ot ,had OW  had
@ signal hypothesis

2 2 2 2
2 = <Mbh/_mt) +</\/7/V—mvv) +<Mbbq_mt> +<Mbbmh>
& Ot,lep OW,lep O't,had Oh

Independent search for best background and signal combinations
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Signal selection
Difference of log;, x> for two hypothesis, for signal and background events
Before (solid) and after (dashed) other selection cuts

Semi-leptonic events Fully hadronic events

-
o
N

# events
S

R

# events

-
(=]

=
e

s
A

Jet energy resolution 50%, 70% b-tagging efficiency
Very efficient background rejection possible
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Rare decays i

Expected limits  on BR(t — ch) x BR(h — bb)

Collision energy 500 GeV, different jet energy resolutions
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Expected limits

on BR(t — ch) x BR(h — bb)

Jet energy resolution 50%, different collision energies

£ —e— 380 GeV
; . —e— 500 GeV
g \ —e— 1000 GeV
) -4
o 10 _ e
> o
nj S
iSe
SN
\\
N \H
L L PRI | 1 1 L i i PRI | I I I I

A.F.Zarnecki (University of Warsaw)

10°
Top pairs produced
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Conclusions Moo

Precise determination of top parameters is crucial for validation of the
Standard Model (or any alternative BSM theory)

Top threshold scan at the e™e™ collider gives unique oportunities for
precise mass, width and coupling determination

Direct measurement of Yukawa and electroweak couplings require running
at higher beam energies

High background suppression capabilities will allow searches for FCNC top
decays down to BR ~ 107> — 10~*

Even in clean eTe™ environment, top event reconstruction is very
challenging. Stringent requirements are imposed on detector performance.
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Thank you!
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Backup Mo

Standard Model stability

Stability criteria as a function of top and Higgs boson mass
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Backup

Future eTe™ colliders

Expected luminosity of considered accelerators
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1

Top threshold
Results of the NNNLO threshold cross section computations

1.4 . . .
1.2
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arXiv:1506.06864 hep-ph]

Prospects for reducing theoretical uncertainty to 20 MeV
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Rare decays

Expected maximal FCNC branching ratios for different models

Model BR(t—c H) | BR(t—c~) | BR(t—c g) | BR(t—c Z)
SM 3.1071° 5.10"% 5.10712 10714
2HDM 1075 -10"* 107° 1078 10710
2HDM (FV) | 1073-1072 | 107®- 107" 1074 107°
MSSM 107°-107% | 1078-10°| 1077-10"* | 1078 -10°°
R SUSY 10°-107% | 10°-102| 1075-10"3| 10°¢-10"*
Little Higgs 107> 1.3-1077 1.4-1072 2.6-107°
Quark Singlet | 4.1-107° 7.5-107° 1.5-1077 1.1-107*
Randal-Sundrum 10~* 10° 1010 103

+
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Rare decays
Selection of t — cH events - comparison of signal and bg. hypothesis

Correlation of logy, x? for two hypothesis (possible cut indicated)
Signal events
}u; ?ﬁ '-": T
USE mE L -..".' .
o o L !._::_:..:
T : o
Lo iyt
Lo it
o]
R g
b 0 1

80% b-tagging efficiency (scenario B)
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