Electroweak Measurements at the Tevatron

Kristian Harder

for the CDF and DØ Collaborations

Les Rencontres de Physique de La Vallée d’Aoste, La Thuile, 7 March 2007
Precision Measurement of the W Boson Mass with CDF

Chris Hays, University of Oxford

Les Rencontres de Physique de la Vallee d’Aoste
March 7, 2007
On the Brink of Revelation and Revolution: Electroweak Symmetry Breaking in 2009

Dr. Richard St. Denis
Glasgow University
La Thuile
March 4-10, 2007
Where the fb$^{-1}$ are coming from

Fermilab’s Tevatron: 2 km diameter $p\bar{p}$ collider

centre of mass energy 1.96 TeV
Tevatron performance: peak lumi

very close to the (revised) design luminosity!

Kristian Harder, 7 March 2007
Tevatron performance: integrated lumi

integrated lumi still falling short of 55 pb$^{-1}$ per week expectation.
still problems with antiproton stacking rate!

BUT: delivered lumi per experiment growing quickly

Kristian Harder, 7 March 2007
Tevatron performance: integrated lumi

Delivered luminosity per experiment: currently $\approx 2.4 \text{ fb}^{-1}$

Lumi used in analyses presented today: typically $\approx 1 \text{ fb}^{-1}$

Difference explained by:
- $\approx 1 \text{ year delay in preparing data for analysis}$
 (understanding detector effects etc)
- Losses due to hardware and data quality problems

Integrated lumi still falling short of 55 pb^{-1} per week expectation.

Still problems with antiproton stacking rate!

BUT: Delivered lumi per experiment growing quickly
Each experiment has collected $>2 \text{ fb}^{-1}$ of 1.96 TeV \sqrt{s} pp collisions. Current Run II: $>15 \times$ Run I data set.
\[\eta = -\ln(tan(\Theta/2)) \]

- \(\eta = 0 \): central muon
- \(\eta = 1.7 \): central tracker
- \(\eta = 2 \): forward muon
- \(\eta = 3 \): forward tracker
- \(\eta = 4.2 \): calorimeter

Kristian Harder, 7 March 2007
DØ tracking detectors

- **8 (+1) layers of silicon strips**
- **16 (-2) silicon disks**
- **16 scintillating fiber layers**
- **≈ 2 T solenoid**

Kristian Harder, 7 March 2007
CDF Detector

High-precision tracking drift chamber
\[\delta p_T/p_T = 0.05\% \quad p_T : 2\% \text{ for } 40\text{ GeV } \mu \]

High-precision electromagnetic calorimeter
\[\delta E_T/E_T = 13.5\%/\sqrt{E_T} \oplus 1.7\% : \quad 3\% \text{ for } 40\text{ GeV } e \]
CDF inner detectors

- 6–7 layer silicon
- COT: 96 layer
- 1.4 T solenoid

Kristian Harder, 7 March 2007
SM cross-section predictions

reconstructed events:
- O(100k) per fb$^{-1}$ per final state
- O(1) per fb$^{-1}$ per final state

Cross-section [pb]

- W
- Z
- Wγ
- Zγ
- WW
- WZ
- ZZ
- H → WW

Tevatron Run II pp at $\sqrt{s} = 1.96$ TeV/c2

SM Expectation

note: this is σ, not $\sigma \times \text{BR}$
Electroweak physics 101

Simplest tree-level diagrams to study at hadron colliders:

\[
\begin{align*}
 Z &\rightarrow \ell\ell, \quad W &\rightarrow \ell\nu
\end{align*}
\]

- Reconstruction can be studied very well:
 - clean signature (high \(p_T \) leptons)
 - high rate (for single W,Z production)

Electroweak physics = excellent laboratory for precision studies!

- testing the SM beyond leading order
- detecting non-SM contributions
- constraining PDFs

Kristian Harder, 7 March 2007
Total W, Z production cross-sections: good agreement with Standard Model (at current precision!)

BUT: not the most sensitive observable to look at for SM checks!
Electroweak topics of the day

Analyses presented in this talk:

- differential Z cross sections (rapidity, transverse momentum)
- better distinction of production mechanisms
- diboson production (WW, WZ, ZZ, Wγ, Zγ)
- unknown loop contributions?
- anomalous triple gauge couplings?
- high mass particles decaying to two bosons? (Higgs?)

All these require a lot more integrated luminosity to study than
\[\sigma_{tot}(p\bar{p} \rightarrow W+X) \text{ and } \sigma_{tot}(p\bar{p} \rightarrow Z+X) \]
lepton identification

electrons
- E_t above ≈ 20 GeV
- shower shape criteria
- isolation requirement
- $|\eta|$ coverage CDF < 1.1 (central), 1.2–2.0 (forward)
 DØ < 1.1 (central), 1.5–2.5 (forward)

muons
- p_t above ≈ 20 GeV
- isolation requirement
- $|\eta|$ coverage CDF $< 1.1/1.2$ (central)
 DØ < 1 (central), 1–2 (forward)

tau not treated separately. $\tau \rightarrow e$, $\tau \rightarrow \mu$ included in e, μ channels

neutrinos
- missing E_t above ≈ 20 GeV
- CDF: isolation requirement (angular distance)
forward region probes PDF at low x + large Q^2, and at large x use $Z \rightarrow e^+e^-$ events: best η range —

DØ: $|\eta| < 3.2$, CDF: $|\eta| < 2.8$

submitted to PRD, 1 fb$^{-1}$ analysis in progress
Z transverse momentum

- Boson p_T can be non-zero for NLO
- p_T shape predicted by resummation
- >1 model for small x (=large rapidity)
 → forward region very interesting!

\begin{align*}
Z \text{ boson } p_T \text{ after unfolding} & \\
\frac{1}{\sigma} \frac{d\sigma}{dp_T} \cdot Br(Z^0 \rightarrow e^+e^-) & \\
\text{Resbos+PHOTOS CTEQ6.1m, no small-x corr} & \\
\text{Resbos+PHOTOS CTEQ6.1m, with small-x corr} & \\
\text{D0 Run II data} & \\
\end{align*}

tricky analysis:
- sensitive to electron energy scale
- p_T dependence of lepton ID

improving model sensitivity:
- more data
- plot in bins of Z rapidity
 → updated version due soon

Kristian Harder, 7 March 2007
no LO ZZγ and Zγγ vertices in SM → Zγ production only as ISR or FSR

new physics could be found as additional ZZγ or Zγγ contribution potentially with high E_t photons

CDF and DØ analyses: $Z \rightarrow ee$ selection photon with $E_t > 7$ GeV (angular separation)

two-body vs three-body mass

CDF Run II Preliminary, 1.1fb$^{-1}$

DØ Run II Preliminary

Kristian Harder, 7 March 2007
Zγ results

<table>
<thead>
<tr>
<th>candidates</th>
<th>Zγ cross section \times BR</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>DØ 387</td>
<td>4.51 ± 0.37 (stat+syst) ± 0.27 (lum) pb</td>
<td>4.2 ± 0.2 pb</td>
</tr>
<tr>
<td>CDF 390</td>
<td>4.9 ± 0.3 (stat) ± 0.3 (syst) ± 0.3 (lum) pb</td>
<td>4.7 ± 0.4 pb</td>
</tr>
</tbody>
</table>

NB: different SM predictions due to different kinematic region
good agreement with Standard Model!

two-body vs three-body mass

![Two-body vs three-body mass](image1)

photon E_T spectrum

![Photon E_T spectrum](image2)
Now with LO diagrams:

similar analysis to $Z\gamma$, but $W\rightarrow \mu\nu$ (CDF+DØ), $W\rightarrow e\nu$ (DØ)

CDF RunII Preliminary 1/fb

<table>
<thead>
<tr>
<th>Process</th>
<th>Number</th>
<th>$Z\gamma$ cross section \times BR</th>
<th>SM prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF μ</td>
<td>855</td>
<td>19.11 ± 1.04 (stat) ±2.40 (syst) ±1.11 (lum) pb</td>
<td>19.3 ± 1.4 pb</td>
</tr>
<tr>
<td>DØ μ</td>
<td>245</td>
<td>3.21 ± 0.49 (stat+syst) ±0.20 (lum) pb</td>
<td>3.21 ± 0.08 pb</td>
</tr>
<tr>
<td>DØ e</td>
<td>389</td>
<td>3.12 ± 0.49 (stat+syst) ±0.19 (lum) pb</td>
<td>3.21 ± 0.08 pb</td>
</tr>
</tbody>
</table>

DØ uses tight FSR veto: $M_t(W\gamma) > 110$ GeV
increased sensitivity to anomalous couplings through charge-signed rapidity difference:

interference between tree-level diagrams

\[\text{dip in } Q_\ell \times [y(\gamma) - y(\ell)] \]

prediction (SM vs example anom TGC) data

good agreement with Standard Model...and with many other scenarios...clearly need more data for this measurement!
WW
(SM: 12.4 ± 0.8 pb)

WZ
(SM: 3.7 ± 0.3 pb)

ZZ
(SM: 1.4 ± 0.1 pb)
CDF WW with 0.8 fb$^{-1}$

$WW \rightarrow \ell\ell\nu\nu$ with $\ell\ell = ee, e\mu, \mu\mu$

\approx std lepton selection, missing E_t, jet veto, opposite charge, $|\Delta z| < \pm 4$ cm

95 events, cross section 13.6 ± 2.3(stat)± 1.6(syst)± 1.2(lumi) pb,

SM prediction 12.4 ± 0.8 pb
WZ → ℓℓν, with eee, eem, emm, mmm (total BR ≈ 1.5%) again, standard lepton and missing E_t selection.
require two leptons in Z mass window.

Selection results:

<table>
<thead>
<tr>
<th></th>
<th>Candidates</th>
<th>Background</th>
<th>Signal Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>DØ:</td>
<td>12</td>
<td>3.61±0.20</td>
<td>3.34σ</td>
</tr>
<tr>
<td>CDF:</td>
<td>16</td>
<td>2.65±0.28±0.33±0.09</td>
<td>6.0σ</td>
</tr>
</tbody>
</table>

Z mass

background composition similar, just overall worse S/B ratio for DØ
<table>
<thead>
<tr>
<th></th>
<th>measured</th>
<th>predicted</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CDF</td>
<td>5.0^{+1.8}_{-1.4} (stat) ± 0.4 (syst) pb</td>
<td>3.7 ± 0.3 pb</td>
<td></td>
</tr>
<tr>
<td>DØ</td>
<td>4.0^{+1.9}_{-1.5} (stat+syst) pb</td>
<td>3.7 ± 0.3 pb</td>
<td></td>
</tr>
</tbody>
</table>

Events / 2.5 GeV

CDF Run II Preliminary

\[\int L \, dt = 1.1 \, fb^{-1} \]
How about events with 4 leptons? SM predicts \(\approx 2 \) events in 1 fb\(^{-1} \)...

Here is a candidate. The only one so far.

\[\sigma(ZZ) < 3.8 \text{ pb} \]
(95% C.L.)

(SM: 1.4 \pm 0.1 \text{ pb})

With 4–8 fb\(^{-1} \), this could become another first observation.
DØ + CDF data samples increase quickly
understanding of detector response improving as well
bringing electroweak precision physics to the next next-to-next level!

precise measurements

precision physics playground

established signals —
more data should help to improve those!

promising searches

acts of desperation → LHC?
Given precise measurements of m_Z and $\alpha_{EM}(m_Z)$, we can predict m_W:

$$m_W^2 = \frac{\pi \alpha_{EM}}{\sqrt{2} G_F (1 - m_W^2/m_Z^2)(1 - \Delta r)}$$

($"on-shell scheme"$)

Δr: O(3%) radiative corrections dominated by tb and Higgs loops

$$\Delta m_W \propto m_t^2$$

$$\Delta m_W \propto \ln \left(\frac{m_H}{m_Z} \right)$$
Predicted Higgs mass from global electroweak data:

\[m_H = 85^{+39}_{-28} \text{ GeV} \ (< 166 \text{ GeV at 95\% CL}) \]

Direct search from LEP II: \[m_H > 114.4 \text{ GeV at 95\% CL} \]

C. Hays, University of Oxford
W Mass Prediction and Measurement

W mass uncertainty from input parameters:

<table>
<thead>
<tr>
<th>Parameter Shift</th>
<th>m_W Shift (MeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta m_H = +100$ GeV/c^2</td>
<td>-41.3</td>
</tr>
<tr>
<td>$\Delta m_t = +2.1$ GeV/c^2</td>
<td>12.8</td>
</tr>
<tr>
<td>$\Delta m_Z = +2.1$ MeV/c^2</td>
<td>2.6</td>
</tr>
<tr>
<td>$\Delta\alpha_{EM} = +0.00013$</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

Direct W mass measurement

W-Boson Mass [GeV]

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEVATRON</td>
<td>80.452 ± 0.059</td>
</tr>
<tr>
<td>LEP2</td>
<td>80.376 ± 0.033</td>
</tr>
<tr>
<td>Average</td>
<td>80.392 ± 0.029</td>
</tr>
</tbody>
</table>

χ^2/DoF: 1.3 / 1

W mass predicted much more precisely (13 MeV) than measured (29 MeV)
Need to reduce δm_W to further constrain m_H and other new physics

C. Hays, University of Oxford
Weak Boson Physics

Z boson parameters measured precisely by LEP:

* 17 million measured Z candidates: $\delta m_Z = 2.1$ MeV, $\delta \Gamma_Z = 2.3$ MeV

Tevatron goal:

* World's most precise W boson measurements
* Expect 15 million measured W candidates
W & Z Boson Production and Decay

Dominant production mechanism: $q\bar{q}(\gamma)$ annihilation

\[\sigma(W \rightarrow l\nu) = 2775 \text{ pb} \]

After event selection
\[(l, \nu E_T > 30 \text{ GeV}):\]
51,128 $W \rightarrow \mu\nu$ candidates
63,964 $W \rightarrow e\nu$ candidates

\[\sigma(Z \rightarrow ll) = 254.9 \text{ pb} \]

After event selection
\[(l E_T > 30 \text{ GeV}):\]
4,960 $Z \rightarrow \mu\mu$ candidates
2,919 $Z \rightarrow ee$ candidates
Measurement Strategy

Calibrate l^\pm track momentum with mass measurements of J/ψ and Y decays to μ

Calibrate calorimeter energy using track momentum of e from W decays

Cross-check with Z mass measurement, then add Z's as a calibration point

Calibrate recoil measurement with Z decays to e, μ

Cross-check with W recoil distributions

Combine information into transverse mass:

$$m_T = \sqrt{E_T^e E_T^\nu (1 - \cos \Delta \phi)}$$

Statistically most powerful quantity for m_W fit

C. Hays, University of Oxford
Momentum Scale Calibration

Magnetic field along z-axis causes curvature in transverse plane:

\[\frac{mv^2}{R} = evB, \]
\[p_T = eBR \]

CDF: Insufficient precision on \(B \) and \(R \) for \(W \) mass measurement

In-situ calibration:

1. Apply relative alignment of drift chamber wires
2. Determine momentum scales such that \(J/\psi, Y, \) and \(Z \) mass measurements result in the world-average values

Combine results to obtain scale for \(m_W \) measurement
Alignment and Corrections

Align tracker using cosmic-ray data
Determine track-level corrections from electron-positron differences

Use ratio of calorimeter energy to track momentum

Curvature biases affect e^+, e^- differently, but calorimeter measurement independent of charge

Statistical uncertainty of track-level corrections leads to $\delta m_W = 6$ MeV

C. Hays, University of Oxford
Tracker Alignment

Central Outer Tracker: Open-cell drift chamber
Wires strung under tension between two endplates

Model endplate distortions and constructional variations using a cell-to-cell endplate alignment

Determine individual cell tilts & shifts using cosmic-ray data
Fit a single 'dicosmic' to track segments on opposite sides of the chamber
Measure cell displacement

C. Hays, University of Oxford

(Kotwal, Gerberich, Hays, NIM A 506, 110 (2003))
Alignment Example

Inner 'Superlayer:'

Before alignment

Cell Shift (microns)

After alignment

CDF Run II preliminary

C. Hays, University of Oxford
Wire Alignment

Wire shape along z-axis determined by:
- Gravitational sag
- Electrostatic effects

Apply additional correction based on cosmic ray study
- Compare parameters of incoming and outgoing tracks from a cosmic ray muon

Final correction removes z-dependent curvature biases
Mass Measurements

Template mass fits to J/ψ, Y, Z resonances in muon decay channels

Fast detector simulation models relevant physical processes
 - internal bremsstrahlung
 - ionization energy loss
 - multiple scattering

Simulation includes event reconstruction and selection

Detector material model
 - Map energy loss and radiation lengths in each detector layer

One material parameter determined from data:
 - Overall material scale
Y Mass Measurement

$\mathcal{L} = 200 \text{ pb}^{-1}$
CDF Run II Preliminary

$\Delta p / p = (-1.38 \pm 0.06) \times 10^3$

$\chi^2 / \text{dof} = 26 / 18$

Tracks with beam constraint

34,618 $Y \rightarrow \mu \mu$ candidates

Short lifetime allows a track constraint to the beam line

Improves resolution by a factor of ≈ 3

Test beam constraint by measuring mass using unconstrained tracks

Correct by half the difference between fits

Take correction as a systematic uncertainty

C. Hays, University of Oxford
Momentum Scale Calibration

Constrain tracks to originate from the beam line
Improves resolution by a factor of ≈ 3

606,701 $J/\psi \rightarrow \mu \mu$ candidates

Fit mass as a function of mean inverse p_T

Slope affected by energy loss modelling
Scale detector material by 0.94 to remove slope

Use calibrated momentum scale to measure Z mass

Constrain tracks to originate from the beam line
Improves resolution by a factor of ≈ 3

$M_Z = (91184 \pm 43)$ MeV

χ^2/dof = 32 / 30

C. Hays, University of Oxford
Electron Track Model Validation

Fit Z mass reconstructed from electron track momenta

\[\mathcal{L} = 200 \text{ pb}^{-1} \quad \text{CDF Run II Preliminary} \]

Measured value consistent with world average value (91188 MeV)
Calorimeter Energy Calibration

Calibrate electron energy using electron track momentum
First step: validate model of electrons in tracker

Additional physical effects beyond those associated with muons:
Photon radiation and conversion in tracker
Full Electron Simulation

- Response and resolution in EM calorimeter
- Energy loss into hadronic calorimeter
- Track reconstruction in outer tracker
- Energy loss in solenoid
- Bremstrahlung and conversions in silicon
- EM Calorimeter
- SOLENOID
- END WALL HADRON CAL
- END PLUG EM CALORIMETER
- END PLUG HADRON CALORIMETER

C. Hays, University of Oxford
Energy Loss Model

Use GEANT to parametrize energy loss in solenoid and hadronic calorimeter

Energy loss in hadronic calorimeter:
Energy Scale Calibration

Calibrate calorimeter energy with peak of W electron E/p distribution

One free parameter for X_0 scale (set with high E/p region)

Material scale: 1.004 ± 0.009

Energy scale uncertainty: 0.034%

CDF Run II Preliminary

χ^2/dof = 17 / 16

Calorimeter Energy < Track Momentum:
Energy loss in hadronic calorimeter

Calorimeter Energy > Track Momentum:
Energy loss in tracker
Apply energy-dependent scale to each simulated electron and photon

Determine energy dependence from E/p fits as functions of electron E_T

Scale: $1 + (6 \pm 7) \times 10^{-5} \left[\frac{E_T}{\text{GeV}} - 39 \right]$

$\delta m_W = 23 \text{ MeV}$

Most energy dependence implicitly accounted for by detector model
Fit Z mass using scale from E/p calibration

\[\mathcal{L} = 200 \text{ pb}^{-1} \]

CDF Run II Preliminary

Measured value consistent with world average value (91188 MeV)

Incorporate mass fit into calibration to reduce scale uncertainty

\[\delta m_W = 30 \text{ MeV} \]

C. Hays, University of Oxford
Boson p_T Model

Model boson p_T using RESBOS generator with tunable non-perturbative parameters

"g_2" parameter determines position of peak in p_T distribution

Measure g_2 with Z boson data (other parameters have negligible effect on W mass)

$$g_2 = 0.685 \pm 0.048: \delta m_W = 3 \text{ MeV}$$

C. Hays, University of Oxford
Recoil Measurement

Calculate recoil by summing over calorimeter towers, excluding:
- Towers with lepton energy deposits
- Towers near the beam line

Electron: Remove 7 towers (shower)
Muon: Remove 3 towers (MIP)

Model tower removal in simulation
\[\delta m_W = 8 \ (5) \text{ MeV for } e \ (\mu) \]
Recoil Model

Components:
- **Recoil scale** \(R = \frac{u_{\text{meas}}}{u_{\text{true}}} \)
- **Recoil resolution**
- **Spectator and additional interactions** (contribute to resolution)

Calibrate scale with momentum balance along bisector axis (\(\eta \))

Calibrate models of recoil resolution and spectator interactions using momentum resolution along both axes

\[\delta m_W = 11 \text{ MeV} \]
Recoil Model Checks

Apply model to W boson sample, test consistency with data

Recoil distribution

Sensitive to scale, resolution, boson p_T

$u_{||}$ distribution

Sensitive to lepton removal, efficiency model, scale, resolution, W decay

Directly affects m_T, fit result
Production, Decay, Background

Boson p_z determined by
parton distribution functions
$Vary\ PDFs\ according\ to\ uncertainties$
$\delta m_W = 11\ MeV$

Bremšrahlung reduces charged lepton p_T

Predict using NLO QED calculation,
apply NNLO correction
$\delta m_W = 11\ (12)\ MeV\ for\ e\ (\mu)$

Background affects fit distributions

QCD: Measure with data
Electroweak: Predict with MC
$\delta m_W = 8\ (9)\ MeV\ for\ e\ (\mu)$

<table>
<thead>
<tr>
<th>Background</th>
<th>$%\ (\mu)$</th>
<th>$%\ (e)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>HadronJet</td>
<td>0.1 ± 0.1</td>
<td>0.25 ± 0.15</td>
</tr>
<tr>
<td>Decays in Flight</td>
<td>0.3 ± 0.2</td>
<td>-</td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>0.05 ± 0.05</td>
<td>-</td>
</tr>
<tr>
<td>$Z \rightarrow ll$</td>
<td>6.6 ± 0.3</td>
<td>0.24 ± 0.04</td>
</tr>
<tr>
<td>$W \rightarrow \tau\nu$</td>
<td>0.89 ± 0.02</td>
<td>0.93 ± 0.03</td>
</tr>
</tbody>
</table>

C. Hays, University of Oxford
Transverse Mass Distribution

Distribution peaks just below m_W and falls sharply just above m_W
Mass fit results blinded with [-100,100] MeV offset throughout analysis
Upon completion, offset removed to determine final result

Transverse mass fits:

- **muon channel**
 - $M_W = (80349 \pm 54_{stat})$ MeV
 - χ^2/dof = 59 / 48

- **electron channel**
 - $M_W = (80493 \pm 48_{stat})$ MeV
 - χ^2/dof = 86 / 48

$m_W = 80417 \pm 48$ MeV (stat + sys)
for $e + \mu$ combination ($P(\chi^2) = 7\%$)
Fit E_T, \not{E}_T distributions and combine with m_T to extract most precise result

Electron E_T fit:

$$m_W = (80451 \pm 58_{\text{stat}}) \text{ MeV}$$

$\chi^2/\text{dof} = 63 / 62$

Muon p_T fit:

$$m_W = (80321 \pm 66_{\text{stat}}) \text{ MeV}$$

$\chi^2/\text{dof} = 72 / 62$

$m_W = 80388 \pm 59 \text{ MeV (stat + sys)}$

for lepton $p_T e + \mu$ combination ($P(\chi^2) = 18\%$)

C. Hays, University of Oxford
$m_W = 80434 \pm 65$ MeV (stat + sys) for neutrino $p_T e + \mu$ combination ($P(\chi^2) = 43\%$)

Electron E_T fit:

CDF II preliminary

$M_W = (80473 \pm 57_{\text{stat}})$ MeV

$\chi^2/\text{dof} = 63 / 62$

Muon E_T fit:

CDF II preliminary

$M_W = (80396 \pm 66_{\text{stat}})$ MeV

$\chi^2/\text{dof} = 44 / 62$

$m_W = 80413 \pm 48$ MeV (stat + sys) for six-fit combination ($P(\chi^2) = 44\%$)
W Mass Uncertainties

<table>
<thead>
<tr>
<th>m_T Uncertainty [MeV]</th>
<th>Electrons</th>
<th>Muons</th>
<th>Common</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>30</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>9</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>u_\parallel Efficiency</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Lepton Removal</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>$p_T(W)$</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>PDF</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>QED</td>
<td>11</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Total Systematic</td>
<td>39</td>
<td>27</td>
<td>26</td>
</tr>
<tr>
<td>Statistical</td>
<td>48</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>60</td>
<td>26</td>
</tr>
</tbody>
</table>

CDF II preliminary

$L = 200 \text{ pb}^{-1}$

C. Hays, University of Oxford
W Mass Result

New CDF result is world's most precise single measurement

Central value increases: 80392 to 80398 MeV
World average uncertainty reduced ~15% (29 to 25 MeV)
Previous Higgs Mass Prediction

Predicted Higgs mass from global electroweak data:

\[m_H = 85^{+39}_{-28} \text{ GeV} \ (< 166 \text{ GeV at 95\% CL}) \]

Direct search from LEP II: \(m_H > 114.4 \text{ GeV at 95\% CL} \)

C. Hays, University of Oxford
Predicted Higgs mass from global electroweak data:

\[m_H = 80^{+36}_{-26} \text{ GeV} \quad (< 153 \text{ GeV at 95\% CL}) \]

Direct search from LEP II: \(m_H > 114.4 \text{ GeV at 95\% CL} \)

C. Hays, University of Oxford
Effect on New Physics Models

Additional space-time symmetry (Supersymmetry) would affect the W mass

Previous world average:

![Graph showing the effect of supersymmetry on the W mass](image-url)
Effect on New Physics Models

Supersymmetry now preferred at 1σ level...

New world average:

- Experimental errors 68% CL:
 - LEP2/Tevatron (today)

- Masses:
 - $M_W = 114$ GeV
 - $M_H = 400$ GeV

- Models:
 - Light SUSY
 - Heavy SUSY

- Both models

Heinemeyer, Hollik, Stockinger, Weber, Weiglein '06

C. Hays, University of Oxford
Effect on New Physics Models

Supersymmetry now preferred at 1σ level...

New world average:

![Graph showing experimental errors: LEP2/Tevatron (today) with confidence levels of 68%, 95%, and 99.7%. The graph includes regions for light SUSY, MSSM, heavy SUSY, SM, and both models. The graph is labeled with different confidence levels and mass values.](image)
Previous W Mass Projections

Previously projected Tevatron precision as a function of luminosity:

Projection with 2 fb^{-1} of data:

$\delta m_W = 40 \text{ MeV per experiment}$

C. Hays, University of Oxford
New W Mass Projections

New projected Tevatron precision as a function of luminosity:

New projection with 1.5 fb⁻¹ of data: \(\delta m_W < 25 \text{ MeV} \) with CDF

C. Hays, University of Oxford
Filling in the Pieces

Precision electroweak data will continue to guide us to the next physics

Today: \(\delta m_{W} = 25 \text{ MeV}, m_{H} < 153 \text{ GeV} \text{ at } 95\% \text{ CL} \)

\[\text{SM} \quad \xrightarrow{\text{measurement}} \quad m_{W} \]

After Higgs: \(\delta m_{W} = 15 \text{ MeV}, \text{SUSY predicted at } 95\% \text{ CL?} \)

\[\text{SM} \quad \times \quad \xrightarrow{\text{measurement}} \quad m_{W} \]

After SUSY: \(\delta m_{W} = 10 \text{ MeV}, \text{more new physics?} \)

\[m_{W} \quad \xrightarrow{\text{measurement}} \quad \text{MSSM} \]
Summary

W mass excellent probe for new particles coupling to the electroweak sector

CDF has made the single most precise W mass measurement

$$m_W = 80413 \pm 34 \text{ MeV (stat)} \pm 34 \text{ MeV (sys)}$$
$$= 80413 \pm 48 \text{ MeV (stat + sys)}$$

New SM Higgs mass prediction: $m_H = 80^{+36}_{-26}$ GeV

Mass has moved further into LEP-excluded region

Expect CDF $\delta m_W < 25$ MeV with 1.5 fb^{-1} already collected

Will squeeze SM in conjunction with Tevatron Higgs results

Electroweak data will probe more new physics after the Higgs
\[\delta M_t = 1.2 \text{ GeV}, \]
\[\delta M_W = 24 \text{ MeV, world avg} \]

\((\text{LEP2} + \delta M_W = 30 \text{ MeV (Tevatron), no LEP/TeV correlations})\)