Electroweak Measurements at the Tevatron

for the CDF and DØ Collaborations

Les Rencontres de Physique de La Vallée d'Aoste, La Thuile, 7 March 2007

Precision Measurement of the W Boson Mass with CDF

Chris Hays, University of Oxford

Les Rencontres de Physique de la Vallee d'Aoste March 7, 2007

On the Brink of Revelation and Revolution: Electroweak Symmetry Breaking in 2008 2009

Dr. Richard St. Denis Glasgow University La Thuile March 4-10, 2007

Where the fb^{-1} are coming from

Fermilab's Tevatron: 2 km diameter $p\bar{p}$ collider centre of mass energy 1.96 TeV

Tevatron performance: peak lumi

very close to the (revised) design luminosity!

Tevatron performance: integrated lumi

Collider Run II Integrated Luminosity

integrated lumi still falling short of 55 pb⁻¹ per week expectation. still problems with antiproton stacking rate! BUT: delivered lumi per experiment growing quickly

Kristian Harder, 7 March 2007

Tevatron performance: integrated lumi

integrated lumi still falling short of 55 pb⁻¹ per week expectation. still problems with antiproton stacking rate! BUT: delivered lumi per experiment growing quickly

Kristian Harder, 7 March 2007

Tevatron Run II

Each experiment has collected >2 fb⁻¹ of 1.96 TeV √s pp̄ collisions Current Run II: >15x Run I data set

First Run II W mass measurement uses 200 pb⁻¹ of CDF data

C. Hays, University of Oxford

DØ tracking detectors

CDF Run II detector

CDF Detector

High-precision tracking drift chamber $\delta p_T/p_T = 0.05\% p_T : 2\%$ for 40 GeV μ

High-precision electromagnetic calorimeter $\delta E_T / E_T = 13.5\% / \sqrt{E_T} \oplus 1.7\%$:

3% for 40 GeV *e*

CDF inner detectors

SM cross-section predictions

reconstructed events:

note: this is σ , not $\sigma \times BR$

Simplest tree-level diagrams to study at hadron colliders:

 $Z \rightarrow \ell \ell, W \rightarrow \ell \nu \text{ reconstruction can be studied very well:}$ $\Rightarrow \text{ clean signature (high } p_t \text{ leptons)}$ $\Rightarrow \text{ high rate (for single W,Z production)}$ $\Rightarrow \text{ electroweak physics = excellent laboratory for precision studies!}$ $\Rightarrow \text{ testing the SM beyond leading order}$ $\Rightarrow \text{ detecting non-SM contributions}$ $\Rightarrow \text{ constraining PDFs}$

 $par{p} o$ W+Xo $\ell
u$ +X

total W, Z production cross-sections: good agreement with Standard Model (at current precision!)

BUT: not the most sensitive observable to look at for SM checks!

Analyses presented in this talk:

differential Z cross sections (rapidity, transverse momentum)

*

better distinction of production mechanisms

diboson production (WW, WZ, ZZ, W γ , Z γ)

anomalous triple gauge couplings?

high mass particles decaying to two bosons? (Higgs?)

All these require a lot more integrated luminosity to study than $\sigma_{tot}(p\bar{p} \rightarrow W+X)$ and $\sigma_{tot}(p\bar{p} \rightarrow Z+X)$

🛧 electrons

- E_t above \approx 20 GeV
- shower shape criteria
- isolation requirement
- $|\eta|$ coverage CDF <1.1 (central), 1.2–2.0 (forward)
 - DØ <1.1 (central), 1.5–2.5 (forward)

👉 muons

- p_t above pprox20 GeV
- isolation requirement
- $|\eta|$ coverage CDF <1.1/1.2 (central)
 - DØ <1 (central), 1–2 (forward)

```
\star tau not treated separately. 	au 
ightarrow e, 	au 
ightarrow \mu included in e,\mu channels
```

neutrinos

- missing E_t above ≈ 20 GeV
- CDF: isolation requirement (angular distance)

forward region probes PDF at low x + large Q^2 , and at large xto use Z $\rightarrow ee$ events: best η range — DØ: $|\eta| < 3.2$, CDF: $|\eta| < 2.8$

boson p_t can be non-zero for NLO p_t shape predicted by resummation > 1 model for small x (=large rapidity) \rightarrow forward region very interesting!

tricky analysis:
sensitive to electron energy scale
pt dependence of lepton ID
improving model sensitivity:
more data
plot in bins of Z rapidity
→ updated version due soon

no LO ZZ γ and Z $\gamma\gamma$ vertices in SM \rightarrow Z γ production only as ISR or FSR

new physics could be found \star as additional ZZ γ or Z $\gamma\gamma$ contribution \star potentially with high E_t photons

CDF and DØ analyses: $Z \rightarrow ee$ selection photon with $E_t > 7$ GeV (angular separation)

two-body vs three-body mass

Kristian Harder, 7 March 2007

	candidates	${\sf Z}\gamma$ cross section $ imes$ BR	SM prediction
DØ	387	$4.51\pm0.37(\text{stat+syst})\pm0.27(\text{lum}) \text{ pb}$	4.2±0.2 pb
CDF	390	$4.9 \pm 0.3(stat) \pm 0.3(syst) \pm 0.3(lum)$ pb	4.7±0.4 pb

NB: different SM predictions due to different kinematic region good agreement with Standard Model!

two-body vs three-body mass

Kristian Harder, 7 March 2007

W γ production

Kristian Harder, 7 March 2007

increased sensitivity to anomalous couplings through charge-signed rapidity difference:

interference between tree-level diagrams

 $igstar{}$ dip in $Q_\ell imes [y(\gamma)-y(\ell)]$

prediction (SM vs example anom TGC)

data

good agreement with Standard Modeland with many other scenarios...

clearly need more data for this measurement!

WW $\rightarrow \ell\ell\nu\nu$ with $\ell\ell = ee$, $e\mu$, $\mu\mu$ \approx std lepton selection, missing E_t , jet veto, opposite charge, $|\Delta z| < \pm 4$ cm

95 events, cross section $13.6\pm2.3(stat)\pm1.6(syst)\pm1.2(lumi)$ pb, SM prediction 12.4 ± 0.8 pb

WZ $\rightarrow \ell\ell\ell\nu$, with *eee*, *eeµ*, *eµµ*, *µµµ* (total BR \approx 1.5%) again, standard lepton and missing E_t selection. require two leptons in Z mass window.

selection results:

	candidates	background	signal significance
DØ:	12	3.61±0.20	3.34σ
CDF :	16	$2.65 {\pm} 0.28 {\pm} 0.33 {\pm} 0.09$	6.0σ

	measured	predicted
CDF	$5.0^{+1.8}_{-1.4}(ext{stat}){\pm}0.4(ext{syst})$ pb	3.7±0.3 pb
DØ	$4.0^{+1.9}_{-1.5}$ (stat+syst) pb	3.7±0.3 pb

How about events with 4 leptons? SM predicts \approx 2 events in 1 fb⁻¹...

DØ+CDF data samples increase quickly
 understanding of detector response improving as well
 bringing electroweak precision physics to the next next-to-next level!

precision physics playground

established signals more data should help to improve those!

promising searches acts of desperation \rightarrow LHC?

W Boson Mass

Given precise measurements of m_z and $\alpha_{EM}(m_z)$, we can predict m_W :

$$m_{W}^{2} = \frac{\pi \alpha_{EM}}{\sqrt{2G_{F} (1 - m_{W}^{2}/m_{Z}^{2})(1 - \Delta r)}}$$

("on-shell scheme")

 Δr : O(3%) radiative corrections dominated by *tb* and Higgs loops

C. Hays, University of Oxford

Higgs Mass Prediction

Predicted Higgs mass from global electroweak data: $m_{_{H}} = 85^{+39}_{_{-28}} \text{ GeV} (< 166 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_{H}} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

W Mass Prediction and Measurement

W mass uncertainty from input parameters:

	Parameter Shift	m_W Shift (MeV/ c^2)
	$\Delta m_H = +100 \ { m GeV}/c^2$	-41.3
	$\Delta m_t = +2.1 \; \mathrm{GeV}/c^2$	12.8
Next talk	$\Delta m_Z = +2.1 \; {\rm MeV}/c^2$	2.6
	$\Delta \alpha_{EM} = +0.00013$	-2.3

Direct W mass measurement

W mass predicted much more precisely (13 MeV) than measured (29 MeV) Need to reduce δm_W to further constrain m_H and other new physics

C. Hays, University of Oxford

Weak Boson Physics

Z boson parameters measured precisely by LEP: * 17 million measured *Z* candidates: $\delta m_z = 2.1 \text{ MeV}, \delta \Gamma_z = 2.3 \text{ MeV}$

Tevatron goal:

- * World's most precise W boson measurements
- * Expect **15** million measured *W* candidates

W & Z Boson Production and Decay

Dominant production mechanism: $q\bar{q}^{(\prime)}$ annihilation

 $\sigma(W \rightarrow l_V) = 2775 \text{ pb}$

After event selection $(l, v E_T > 30 \text{ GeV})$: 51,128 W $\rightarrow \mu v$ candidates 63,964 W $\rightarrow ev$ candidates

 $\sigma(Z \rightarrow ll) = 254.9 \text{ pb}$

After event selection $(l E_T > 30 \text{ GeV}):$ 4,960 Z → µµ candidates 2,919 Z → ee candidates

Measurement Strategy

Calibrate l^{\pm} track momentum with mass measurements of J/ψ and Y decays to μ

Calibrate calorimeter energy using track momentum of *e* from *W* decays

Cross-check with Z mass measurement, then add Z's as a calibration point

Calibrate recoil measurement with Z decays to e, μ

Cross-check with W recoil distributions

Combine information into transverse mass: $m_T = \sqrt{E_T E_T (1 - \cos \Delta \phi)}$

Statistically most powerful quantity for m_w fit

C. Hays, University of Oxford
Momentum Scale Calibration

Magnetic field along z-axis causes curvature in transverse plane: $mv^2/R = evB$, $p_T = eBR$

CDF: Insufficient precision on *B* and *R* for *W* mass measurement

In-situ calibration:

- (1) Apply relative alignment of drift chamber wires
- (2) Determine momentum scales such that *J*/ψ, Y, and *Z* mass measurements result in the world-average values —

Combine results to obtain scale for m_W measurement

Alignment and Corrections

Align tracker using cosmic-ray data Determine track-level corrections from electron-positron differences Use ratio of calorimeter energy to track momentum *Curvature biases affect e*⁺, *e*⁻ *differently, but calorimeter measurement independent of charge*

Tracker Alignment

Central Outer Tracker: Open-cell drift chamber Wires strung under tension between two endplates

> *Model endplate distortions and constructional variations using a cell-to-cell endplate alignment*

Determine individual cell tilts & shifts using cosmic-ray data *Fit a single 'dicosmic' to track segments on opposite sides of the chamber Measure cell displacement*

C. Hays, University of Oxford

(Kotwal, Gerberich, Hays, NIM A 506, 110 (2003))

Alignment Example

Inner 'Superlayer:'

Wire Alignment

Wire shape along z-axis determined by: *Gravitational sag Electrostatic effects*

Apply additional correction based on cosmic ray study *Compare parameters of incoming and outgoing tracks from a cosmic ray muon*

Final correction removes *z*-dependent curvature biases

Mass Measurements

Template mass fits to J/ψ , Y, Z resonances in muon decay channels

Fast detector simulation models relevant physical processes internal bremstrahlung ionization energy loss multiple scattering

Simulation includes event reconstruction and selection

Detector material model Map energy loss and radiation lengths in each detector layer

One material parameter determined from data: Overall material scale

Y Mass Measurement

Momentum Scale Calibration

Electron Track Model Validation

Fit Z mass reconstructed from electron track momenta

Measured value consistent with world average value (91188 MeV)

Calorimeter Energy Calibration

Calibrate electron energy using electron track momentum First step: validate model of electrons in tracker

Additional physical effects beyond those associated with muons: *Photon radiation and conversion in tracker*

Full Electron Simulation

Energy Loss Model

Use GEANT to parametrize energy loss in solenoid and hadronic calorimeter

Energy loss in hadronic calorimeter:

Energy Scale Calibration

Calibrate calorimeter energy with peak of *W* electron *E*/*p* distribution

One free parameter for X_0 scale (set with high E/p region) Material scale: 1.004 ± 0.009

C. Hays, University of Oxford

Scale Energy Dependence

Apply energy-dependent scale to each simulated electron and photon

Determine energy dependence from E/p fits as functions of electron E_T Scale: $1 + (6 \pm 7) \times 10^{-5} [E_T/\text{GeV} - 39]$ ($\delta m_W = 23 \text{ MeV}$)

Most energy dependence implicitly accounted for by detector model

C. Hays, University of Oxford

Z Mass Measurement

Fit Z mass using scale from E/p calibration

Measured value consistent with world average value (91188 MeV) Incorporate mass fit into calibration to reduce scale uncertainty

 $\delta m_W = 30 \text{ MeV}$

Boson p_T Model

Model boson p_{τ} using RESBOS generator with tunable non-perturbative parameters

" g_2 " parameter determines position of peak in p_{τ} distribution

Measure g_2 , with Z boson data (other parameters have negligible effect on W mass)

 $g_2 = 0.685 \pm 0.048$: $\delta m_W = 3 \text{ MeV}$

Recoil Measurement

Calculate recoil by summing over calorimeter towers, excluding: *Towers with lepton energy deposits Towers near the beam line*

Electron Electromagnetic E_T (MeV)

Electron: Remove 7 towers (shower) Muon: Remove 3 towers (MIP)

Model tower removal in simulation $\delta m_w = 8$ (5) MeV for *e* (μ)

Recoil Model

Recoil Model Checks

Apply model to W boson sample, test consistency with data

Recoil distribution

Sensitive to scale, resolution, boson $p_{_T}$

u_{\parallel} distribution

Sensitive to lepton removal, efficiency model, scale, resolution, W decay Directly affects m_T fit result

Production, Decay, Background

u

Boson p_z determined by parton distribution functions *Vary PDFs according to uncertainties* $\delta m_w = 11 \text{ MeV}$

Bremβtrahlung reduces charged lepton p_T Predict using NLO QED calculation, apply NNLO correction δ m_w = 11 (12) MeV for e (μ)

1

W

Q²

x_p E_p

d

u

ū

 $\mathbf{x}_{\mathbf{p}} \, \mathbf{E}_{\mathbf{p}}$

Background affacts fit distributions	Background	% (µ)	% (e)
	Hadronic Jets	0.1 ± 0.1	0.25 ± 0.15
QCD: Measure with data	Decays in Flight	0.3 ± 0.2	-
Electroweak: Predict with MC	Cosmic Rays	0.05 ± 0.05	-
$\delta m_{W} = 8$ (9) MeV for $e(\mu)$	Z→ll	6.6 ± 0.3	0.24 ± 0.04
	$W \longrightarrow \tau v$	0.89 ± 0.02	0.93 ± 0.03
C. Hays, University of Oxford			19

Transverse Mass Distribution

Distribution peaks just below m_{W} and falls sharply just above m_{W}

W Mass Fits

Mass fit results blinded with [-100,100] MeV offset throughout analysis Upon completion, offset removed to determine final result

Transverse mass fits:

W Mass Fits

Fit E_T , E_T distributions and combine with m_T to extract most precise result

Electron $E_{_T}$ fit:

Muon p_T fit:

 $m_W = 80388 \pm 59$ MeV (stat + sys) for lepton $p_T e + \mu$ combination ($P(\chi^2) = 18\%$)

W Mass Fits

 $m_W = 80434 \pm 65 \text{ MeV} \text{ (stat + sys)}$ for neutrino $p_T e + \mu \text{ combination } (P(\chi^2) = 43\%)$

W Mass Uncertainties

CDF II preliminary

L = 200 pb⁻¹

m _T Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60 60	26

W Mass Result

New CDF result is world's most precise single measurement

Central value increases: 80392 to 80398 MeV World average uncertainty reduced ~15% (29 to 25 MeV)

Previous Higgs Mass Prediction

Predicted Higgs mass from global electroweak data: $m_{_{H}} = 85^{+39}_{_{-28}} \text{ GeV} (< 166 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_{H}} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

New Higgs Mass Prediction

Predicted Higgs mass from global electroweak data: $m_{_{H}} = 80^{+36}_{_{-26}} \text{ GeV} (< 153 \text{ GeV at } 95\% \text{ CL})$ Direct search from LEP II: $m_{_{H}} > 114.4 \text{ GeV at } 95\% \text{ CL}$ C. Hays, University of Oxford

Effect on New Physics Models

W

Additional space-time symmetry (Supersymmetry) would affect the *W* mass

Previous world average:

W

Effect on New Physics Models

Supersymmetry now preferred at 1σ level...

New world average:

Effect on New Physics Models

Supersymmetry now preferred at 1σ level...

New world average:

Previous W Mass Projections

Previously projected Tevatron precision as a function of luminosity:

New W Mass Projections

New projected Tevatron precision as a function of luminosity:

New projection with **1.5** *fb*⁻¹ *of data:* $\delta m_{W} < 25$ MeV with CDF

Filling in the Pieces

Precision electroweak data will continue to guide us to the next physics

Today: $\delta m_W = 25 \text{ MeV}, m_H < 153 \text{ GeV at } 95\% \text{ CL}$

After SUSY: $\delta m_{W} = 10$ MeV, more new physics?

Summary

W mass excellent probe for new particles coupling to the electroweak sector

CDF has made the single most precise W mass measurement $m_w = 80413 \pm 34$ MeV (stat) ± 34 MeV (sys) $= 80413 \pm 48$ MeV (stat + sys)

New SM Higgs mass prediction: $m_{H} = 80^{+36}_{-26} GeV$ Mass has moved further into LEP-excluded region

Expect CDF $\delta m_W < 25$ MeV with 1.5 fb⁻¹ already collected Will squeeze SM in conjunction with Tevatron Higgs results

Electroweak data will probe more new physics after the Higgs

Projections on Virtual

