

Top quark production and properties

from the Tevatron, where else ?

Michele Weber, Fermilab For the D0 and CDF Collaborations

Precision Determination of the Top Quark Mass

Pedro A. Movilla Fernández Lawrence Berkeley National Laboratory

On behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallee d'Aoste, March 4-10, 2007, La Thuile, Aosta Valley, Italy

Single Top Quark Production at the Tevatron

Aurelio Juste Fermi National Accelerator Laboratory

OUTLINE

- Motivation
- Experimental Challenge
- Search Strategy
- Results:
 - Evidence for Single Top Quark Production
 - First Direct Measurement of $|V_{tb}|$
- Summary

The top quark

M.Weber

LaThuile 2007

The Top Quark in the Standard Model

- Top quark was discovered 1995.
- It is required in the Standard Model (SM) as weak isospin partner of the bottom quark.
- Striking property: top quark mass is surprisingly large!
 - near electroweak symmetry breaking (EWSB) scale
 - Yukawa coupling ~ 1
- Higgs boson also required by the SM but not seen as yet.

Pedro A. Movilla Fernández

Why Measure the Top Quark Mass?

- Fundamental parameter
- Correlated to other SM parameters via electroweak corrections

- Prediction of the Higgs boson mass.
- Constraints for physics beyond the SM.
- A key to understand EWSB?

 Very active field in Tevatron CDF & DØ collaborations with more then 20(!) different measurements competing on the market.

Outline

Top quark production and identification
Cross section measurements
Properties of the top quark
Wtb: branching ratio, W helicity
Top and new physics

Top Quark Production

- Tevatron is only existing top production machine.
- Run II (since 2001): √s=1.96 TeV
- CDF & D0 experiments have ~2/fb on tape. Run-II goal: 4-8/fb.
- Top quarks are mainly produced in pairs via strong interaction: $\sigma_{tt}(1.96\text{TeV})=6.1\text{pb}$
- 1 top quark pair each 10¹⁰ inelastic collisions...

5

Top quark production

Top quark decay & identification

t→Wb ≅100%

Need to reconstruct and identify Electrons, muons, jets, b-jets and missing transverse energy

decay products have:

- good angular separation in the lab frame
- high transverse momentum

Top Quark Signature

 W decay determines experimental signature: (for more on top properties, see M. Weber's talk.)

Top Pair Branching Fractions

 CDF and DØ have vertex detectors to find displaced vertices from decay of long-lived bhadrons ...crucial to reduce physics background!

6

Precision Top Quark Mass, La Thuile 2007

CDF vertex detector

Challenges of Top Quark Physics

- Requires full detector capabilities
 - tracking, calorimetry, hermeticity
 - secondary vertex finding
- Identification of electrons and muons
 → charged leptons from W decay
- Undetected ("missing") energy
 → neutrino reconstruction (p_z unknown)
- Calorimeter clusters ("jets") → quark reconstruction
- Secondary vertex tagging → quark flavor (b or light)
 - ... reduces physics background and jet/quark combinatorics

Determination of the jet energy scale (JES):

 Correct jet energies for detector effects, hadronization, multiple interactions, ...
 → momenta of hadronic top decay products

7

Production cross section

$$\sigma = \frac{N_{events} - N_{background}}{Luminosity * \epsilon}$$

- Test of QCD at high Q^2
- Higher cross section than predicted could be a sign of new physics: resonant state $X \rightarrow tt$ OR anomalous couplings in QCD?
- Lower cross section could also mean new physics: we make assumptions on the expected decay mode
- Important to measure all decay channels and topologies: different sensitivities to new physics possibilities
- Provides samples for properties measurements

LaThuile 2007

Lepton + jets channel

Golden channel: manageable backgrounds branching fraction 29%

Backgrounds: W+jets fake leptons in multijets

b-jet

b-jet

Lepton-Jets Channel

"Golden Channel": Compromise between statistics and purity:

- BR ~ 30%
- S/B=1/4 11/1 (depending on b-tag requirement)

- 1 e/ μ with large p_T Energy imbalance, high missing E_T
- 4 jets with large E_{T} 0, 1 or 2 b-tags
- Combinatorial quark/jet ambiguity: 12 (0 b-tag), 6 (1 b-tag), 2 (2 b-tags)
- Well defined kinematics: neutrino momentum partly derived from missing E₁

Lepton+jets cross section

Measurement Strategies

Template Method (TM)

- Calculate a <u>per-event observable</u> correlated with M_{top}.
- Compare simulated distributions (for signal+background) with varying M_{top} with data to obtain M_{top}.
- 2nd variable may be explored for JES determination.
 - + computationally simple
 - just one number (for each template variable) per event

Matrix Element Method (ME)

- Calculate a per-event probability density (from ME) for sig.+bkg. as function of M_{top}.
- Multiply probabilities to extract most likely M_{top} (and JES) for whole data sample.

Matrix Element Method

Maximize mass information by exploring SM predictions for top quark dynamics.

$$P_{t\bar{t}}(M_{top}, JES) = \frac{1}{N} \sum_{comb} \int d\sigma_{t\bar{t}}(y, M_{top}) dq_1 dq_2 f(q_1) f(q_2) w(x, y, JES)$$

sum over all neutrino solutions/ jet-quark
combinations - phase space - LO tt production ME v(x, y, JES)

- Transfer functions are probabilities of a set of variables x to be measured given a set of parton level quantities y:
 - hadronization and detector resolution effects
 - simplifying assumptions: lepton momenta + jet/lepton angles exactly known
- Similar expression for background probability but no M_{top} dependence.

JES is determined "in-situ" using W invariant mass: "Penalty" in probability if JES hypothesis leads to a W mass inconsistent with world average value.

 \rightarrow Part of JES uncertainty becomes statistical component of top mass uncertainty!

CDF: Matrix Element, Lepton+Jets 955pb⁻¹

Pedro A. Movilla Fernández

DØ: Matrix Element, Lepton+Jets 370pb⁻¹

- Similar 2-D Likelihood analysis with in-situ JES calibration.
- Includes also events w/o b-tags.

Result using 175 candidate events (≥ 0 b-tag): $M_{top} = 170.3 \pm 2.5 (stat.) \pm 3.5 (JES) \pm 1.5 (syst.) GeV/c^2$

DØ update coming soon!

Di-Lepton Channel

- 2 opp. charged lepton candidates
- 2 high E_T jets
- ≥0 or ≥1 b-tag

- **b-jet e, μ** ν_e, ν_μ
- large missing E_{T}
- high total transverse energy

Clean sample but poor statistics:

BR ~ 5%

LL

MET

S/B ~ 2 (≥0 b-tag)
 S/B ~ 20 (≥1 b-tag)

- Small combinatorial ambiguity: 2 jet-quark assignments
- Under-constrained kinematics: 2 neutrinos but only one missing energy variable ...requires assumptions of/integration over unmeasurable quantities to solve M_{top}
- Major background types:
 Z/γ*+2jets
 WW+2 jets

W+3jets (fake leptons)

Pedro A. Movilla Fernández

13

Dilepton cross section

CDF: Matrix Element, Di-Lepton 1030pb⁻¹

- Background probabilities reduce M_{top} uncertainty by 15%
- In-situ JES calibration not possible for the signal.

Pedro A. Movilla Fernández

CDF: Matrix Element Method, Di-Lepton, 1030pb⁻¹

Precision Top Quark Mass, La Thuile 2007

DØ: Template, Di-Lepton 370pb⁻¹

 Di-lepton template methods handle kinematic ambiguity by assuming values for kinematic variables to extract a M_{top} solution and assigning weights to different solutions.

Neutrino Weighting Method: Assume (scan) neutrino pseudo rapidities $\eta(v_1)$, $\eta(v_2)$ and m_t , assign a weight to the solution based on the compatibility with the observed missing E_r :

$$w(m_t) \propto \sum_{v \text{ assumptions}} \exp\left(\frac{-(E_x^{\text{miss, calc}}(i) - E_x^{\text{miss, obs}})^2}{2\sigma_{E_x^{\text{miss}}}^2}\right) \exp\left(\frac{-(E_y^{\text{miss, calc}}(i) - E_y^{\text{miss, obs}})^2}{2\sigma_{E_y^{\text{miss}}}^2}\right)$$

 M_{top} templates are formed using sum of weights vs. m_{t} .

DØ: Template, Di-Lepton 370pb⁻¹

Matrix Element Weighting Method: Assume (scan) over m_t and at most 4 v solutions (given a m_t , m_w , lepton/quark/missing E_T configuration), assign a weight based on the compatibility of ME prediction with the observed lepton transverse momenta:

$$w(m_t) \propto \sum_{\text{v solutions}} \sum_{\text{jets}} f_{\text{PDF}}(x_{q_1}) f_{\text{PDF}}(x_{q_2}) p(E_l^*; m_t) p(E_{\overline{l}}^*; m_t)$$

 $M_{_{top}}$ templates are formed using $m_{_t}$ values which gives maximum weight ("peak mass").

Repeat calculations with jet/lepton momenta/missing E_T randomly smeared within their detector resolutions, solve the equations and average the weights.

DØ: Template, Di-Lepton 370pb⁻¹

- New: CDF template di-lepton analysis based on 1/fb data set:
- Makes assumptions about the longitudinal momentum of the tt system to solve equations (see appendix):

Pedro A. Movilla Fernández

CDF: Template, Di-Lepton, 1030pb⁻¹

 Under-constrained problem requires assumption for one kinematic variable... here: longitudinal momentum P₂ of tt system

- Assume $P_z(t\bar{t})=0$, $\sigma\{P_z(t\bar{t})\}=180$ GeV/c²:
 - No top mass dependence, same for signal and background ...derived from MC and lepton plus jets data;
- Solve numerically equations within allowed phase space: For each event, dice 10K times the two b-quark energies, E_T(miss), and P_z(tt̄) around their measured/assumed values within their given resolutions.

CDF Run II preliminary (1.0 fb⁻¹)

- Sum up and take the most probable resulting ("raw reconstructed") top quark mass to build the template.
- Likelihood vs. top mass Events / (15 GéV/c² 0 5 니 년 -40, No in-situ JES calibration. MC expected 20 Result using 64 candidate events (≥ 0 b-tag): 0 120 140 160 180 200 220 M₄ / (GeV/c²) $M_{top} = 168.1 + 5.6_{-5.5} (stat.) \pm 3.2 (JES) \pm 2.4 (syst.) GeV/c^2$ 64 data events signal+bckg bckg 100 150 200 250 300 350 400 Pedro A. Movilla Fernández Reconstructed Mass (GeV/c²)

All-Jets Channel

Good statistics but huge background:

- BR ~ 44%
- S/B ~ 1/23 (≥0 b-tag)
 S/B ~ 1/6 (≥1 b-tag)

- Exactly 6 jets with high E_{T}
- Lepton veto
- Low missing E_T significance
- ≥1 or 2 b-tags
- Large total transverse energy
- Spherical isotropic event topology
- Large combinatorial ambiguity: 90 (1 b-tag), 24 (2 b-tags)
- Well measurable kinematics, no neutrinos.
- Dominant background types: non-W bb4q non-W 6q (fake b-tags)
- Additional signal probability cut (from ME calculation) yields
 S/B ~ 1/1 ... very restrictive but usable for >1/fb.

All-hadronic cross section

CDF: Template Method, All-Jets, 943pb⁻¹

 2-D templates for M_{top} and JES: Signal from ME, background model from data. (0 b-tag sample, has negligible signal)

Likelihood is maximized w.r.t:

& number of 1(2) b-tagged signal/back. events respecting constraints (background fraction poorly known in All-Jets channel!)

M_{top}, JES

CDF Template Method, All-Jets, 943pb⁻¹

- First All-Jets result with in-situ JES.
- All-Jets channel becomes competitive!
- Recent result from "traditional" 1-D template method using a kinematic mass fitter:
 no in-situ JES calibration, no restrictive signal probability cut:
 3.0%

1-D template, 1020pb⁻¹, 772 candidate events (\geq 1 b-tag): $M_{top}=174.0\pm2.2(stat.)\pm4.5(JES)\pm1.7(syst.)GeV/c^2$

Comparisons

Combination of best Run-I & II results for each experiment (new CDF All-Jets result not included here): $M_{top}(all-jets) = 173.4 \pm 4.3 \text{ GeV}/c^2$ $M_{top}(lep-jets) = 171.3 \pm 2.2 \text{ GeV}/c^2$ $M_{top}(di-lepton) = 167.0 \pm 4.3 \text{ GeV}/c^2$ (status Aug. 2006)

- Detailed comparison taking correlations between systematic uncertainties into account
- → Results from different channels are consistent!
- DØ will present new 1/fb results soon.

Conclusions and Outlook

- Confidence through consistent picture of many excellent top mass determinations.
- Important lesson: JES uncertainty can be greatly reduced by in-situ W calibration.
- CDF&DØ have reached a combined precision of 1.2% (better than Run-IIa goal).

$$M_{\rm top} = 171.4 \pm 2.1 \, {\rm GeV}/c^2$$

 Can reach 1% precision with full Run-II data, may even push to ∆m_{top}~1GeV/c² (expected after 5-10 years LHC!)

Tevatron might be the lasting legacy for the top quark mass!

(...at least for a while)

24

Tevatron Combination

Significant improvements w.r.t. Run-I.

Combination of best individual results using BLUE technique: ("Best Linear Unbiased Estimate", NIM A270 110, A500 391)

- Account for correlations
- Include Run-I results
 (New CDF All-Jets result not yet incorporated.)

Decay length technique: systematics uncorrelated with other measurements, promising for LHC (see appendix).

23

Non-JES will be limiting factor at

the end of Run-II (see appendix).

Mass dependence

All cross sections are measured at mt=175 GeV

Dependence on mass is studied both for measurement (detection) and theory (production)

Probing the Wtb vertex

19

Probing the assumption $t \rightarrow Wb$

$$R = \frac{Br(t \to Wb)}{Br(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{ts}|^2 + |V_{td}|^2} = 0.9980 \text{ to } 0.9984$$

(True in SM with three quark generations)

Measurement: count b-jets. The number of b-jets depends strongly on R and the tagging efficiency.

→ Result is obtained from a binned maximum likelihood fit to data for $N_{iet} = 3$ and $N_{iet} = 4$ → Simultaneous fit to R and cross section

 $Br(t \rightarrow Wb) = 1$ and $\sigma_{tt} = 7$ pb

W Helicity from $t \rightarrow Wb$ Decays

- Examines the nature of the tWb vertex, probing the structure of weak interactions at energy scales near EWSB
- Stringent test of SM and its V-A type of interaction.
- Uses boosted W from top decays

Results (2 selected)

23

1.5

F

Single Top Quark Production

• Main SM production mechanisms at a hadron collider:

- Not discovered yet. It has been the subject of intense search at the Tevatron since Run I.
 Here will discuss the experimental status based on ~1 fb⁻¹ of Run II data.
- Motivation:
 - Study of the *tbW* interaction:
 - Direct measurement of $|V_{tb}|$: $\sigma \propto |V_{tb}|^2$
 - Anomalous couplings
 - Sensitivity to different New Physics:
 - s-channel: W', H^{\pm}, W_{KK},...
 - t-channel: FCNC interactions, 4th family,...
 - Top spin physics (~100% polarized top quark)
 - Develop/exercise techniques to extract small signal in a large background (e.g. Higgs search).

Experimental Signature and Event Selection

proton

antiproto

- Experimental signature:
 - One high p_T isolated lepton (e or μ)
 - High missing transverse energy
 - ≥2 jets (≥1 b-tag)

		R Start
e:	p _T >20 GeV, η <2.0	p _T >15 GeV, η <1.1
μ:	p _T >20 GeV, η <1.1	p _T >18 GeV, η <2.0
Missing E_T	MET>25 GeV	15 <met<200 gev<="" td=""></met<200>
Jets	=2, p _T ^{uncorr} >15 GeV, η <2.8	2-4, p _T >15 GeV, η <3.4 p _{T,1} >25 GeV, η ₁ <2.5 p _{T,2} >20 GeV
B-jet	1 or 2	

• Experimental signature similar to tt→lepton+jets but lower jet multiplicity.

ā

g

Main backgrounds: W+jets and tt.

antiproto

Search Strategy Overview

- In order to achieve the highest possible sensitivity, analyses underwent careful optimization:
 - Maximize acceptance (loose lepton identification, low p_T thresholds, wide η range, improved b-tagging performance,...)
 - Include as many channels as possible:
 DØ: 2-4 jets
 - Perform analysis in separate channels since S/B different and combine at the end:
 DØ: (e,μ) x (2,3,4 jets) x (1,2 tags) = 12
 - Develop sophisticated multivariate analysis techniques for best possible signal-to-background discrimination.
 - Optimize analysis for combined (tb+tqb) search (also perform separate searches).

Multivariate Analysis Techniques

- A number of discriminant variables between signal and background can be identified:
 - B-tagging NN
 - Reconstructed top mass
 - Q(lepton)•η(untagged jet)
 - Top spin-related angular variables
 - ..

but no single variable is powerful enough to cut on it.

 \Rightarrow Combine a number of variables into a single more powerful discriminant variable by using a multivariate analysis technique.

Neural Network Analysis

MC norm. to Data ALL

s-channel

t-channel

mistags

Diboson

Z->Jets

Q*η

40

35

30

25 20

15

10

5

0.5

CDF II Preliminary

non₩

Wbb

Wcc

Wc

tt

data

CDF II Preliminary 955 pb MC norm. to Data ALL CDF II Preliminary 955 pb⁻¹ s-channel events per 0.5 units 160 t-channel Consider 26 kinematic or event-'n Wbb 140 <u>0</u> Wcc shape variables: b-tagging NN, Wc 200 vents per mistags reconstructed top mass, Qxn, etc. nonW Diboson Z->Jets Three NNs trained for combined • dat (tb+tqb) and separate (tb and tqb) searches. Build templates for five categories: • 0.5 -0.5 signal, tt, c-like, b-like and non-W. ANN b tag output b-like background MC **CDF II Preliminary** MC **CDF II Preliminary** t-channel signal MC Output s-channel NN 0 50 -Output s-channel NN 0 5 1 1.8 single-top signal tt background 1.6 c-like background 1.4 b-like background 1.2 non-W background 0.8 0 0.6 -0.5 -0.5 0.4 0.2 -1 -0.5 Events per 0.1 units 0 00 00 00 00 00 -0.5 0.5 ń normalized to fit result CDF II data **Output t-channel NN Output t-channel NN** tī background -like background b-like background non-W background **Expected Performance** Median p-value (CDF) σ₉₅ (*) **CDF II Preliminary** 955 pb⁻¹ Combined search 2.6 pb 0.5% (2.6σ) 50^[] 1.3 pb (tqb) 0.4% (2.7σ) Separate search 1.5 pb (tb) (*) Assuming no single top -0.5 0 0.5 **NN output**

normalized to unit area

Matrix Element Discriminants

- Pioneered by DØ in Run I top mass measurement. Now being used in a search.
- Attempt to make an optimal use of the kinematic information in the event.
- <u>Principle</u>: compute event probability density for a given hypothesis (e.g. single top) making use of all reconstructed objects in the event (integrate over unknowns).

E.g. 2 jet events:
$$\vec{x} = \{p_{\ell}^{\mu}, p_{j1}^{\mu}, p_{j2}^{\mu}\}$$
 Only 6 "discriminant variables" used!!

differential cross section (LO matrix element)

parton distribution functions

$$P_{i}(\vec{x}) = \frac{1}{\sigma} \int \cdots \int \sum_{comb} d^{n} \sigma_{i}(\vec{y}) dq_{1} dq_{2} f(q_{1}) f(q_{2}) W(\vec{x})$$
$$d^{n} \sigma_{i}(\vec{y}) = \frac{(2\pi)^{4}}{2s} |M_{i}(\vec{y})|^{2} d\Phi^{n}(\vec{y})$$

transfer function: mapping from parton-level variables (y) to reconstructed-level variables (x)

Maximize sensitivity by:

- summing over all permutations of jets and neutrino solutions
- allowing better measured events to contribute more (via the transfer function)
- implementing b-tagging information
- Matrix element discriminant defined as:

b = b-tagging NN probability (event-by-event)

$$D_{S}(\vec{x}) = \frac{P_{S}(\vec{x})}{P_{S}(\vec{x}) + P_{bckg}(\vec{x})}; \quad S = tb \text{ or } tqb$$

$$P_{bckg}^{2j}(\vec{x}) = c_{Wbb}P_{Wbb}(\vec{x}) + c_{Wcg}P_{Wcg}(\vec{x}) + c_{Wgg}P_{Wgg}(\vec{x})$$

$$P_{bckg}^{3j}(\vec{x}) = P_{Wbbg}(\vec{x})$$

Boosted Decision Trees Analysis

- Machine learning technique, widely used in social sciences, some use in HEP (e.g. MiniBooNe).
- <u>Idea</u>: recover events that fail criteria in cut-based analyses.
- Select variable and splitting value with best separation to produce two "branches".
- Repeat recursively at each node. Stop when there is no improvement or too few events are left.
- DT output = "leaf _____" purity, close to 1(0) for signal(background)
- Improve performance of DT by using "adaptive boosting", which averages over many trees, diluting the piecewise nature of the DT output.
- Consider a total of 49 variables to discriminate between signal and backgrounds.
 - Most sensitive variables: M(all jets), M(W,b₁) ("top mass"), $Qx\eta$, $cos\theta$ (lepton,b₁)|_{top rest-frame}
 - Adding more variables does not reduce discrimination.
 - Reducing number of variables always reduces sensitivity.
 - Same list of variables used for all analysis channels.
- Trained 36 sets of trees:
 - (tb+tqb, tb, tqb) x (e, μ) x (1,2,3,4 jets) x (1tag, 2tags)
 - Signal trained against sum of all backgrounds.
 - Combined search (tb+tqb) has best sensitivity.

H_τ>212

p,<31.6

purity

M,<352

Combined search $1.8\% (2.1\sigma)$

CDF Results

NN analysis 955 pb⁻¹ CDF II Preliminary 20 Events per 0.1 units Events/0.1 normalized to fit result --- CDF II data tt background c-like background 15 b-like background non-W background 10 5 0.4 0.8 0.6 NN output $\sigma_{tb} = 0.7^{+1.5}_{-0.7} \ pb; \ \sigma_{tab} = 0.2^{+1.1}_{-0.2} \ pb$ $\sigma_{th+tab} < 2.6 \ pb @ 95\% \ CL$ No evidence of signal

•

Likelihood Function analysis

CDF Run II Preliminary, L=955 pb⁻¹

No evidence of signal

- correlation of fit results: ~53%
- compatibility of measurement in data: ~4-6%
- Analyzing more data should shed some light.

Matrix Element analysis

DØ Results

Matrix Element analysis

Boosted Decision Trees analysis

DØ Results

Event Characteristics

- Results from the three analyses are consistent with each other.
- Overlap within the subset of 50 highest-discriminant events per analysis: ~50%.
- Preliminary estimate of correlation in measured cross section between analyses using pseudo-experiments (incl. syst. uncertainties): ~50%.

Combined cross section and significance will soon become available.

Discoveries...

