
16 32. Statistics

32.3.2.1. The Neyman construction for confidence intervals:

Consider a p.d.f. f(x; θ) where x represents the outcome of the experiment and θ is the
unknown parameter for which we want to construct a confidence interval. The variable
x could (and often does) represent an estimator for θ. Using f(x; θ) we can find for a
pre-specified probability 1−α and for every value of θ a set of values x1(θ, α) and x2(θ, α)
such that

P (x1 < x < x2; θ) = 1 − α =
∫ x2

x1

f(x; θ) dx . (32.39)

This is illustrated in Fig. 32.3: a horizontal line segment [x1(θ, α), x2(θ, α)] is drawn
for representative values of θ. The union of such intervals for all values of θ, designated
in the figure as D(α), is known as the confidence belt. Typically the curves x1(θ, α) and
x2(θ, α) are monotonic functions of θ, which we assume for this discussion.

Possible experimental values x

pa
ra

m
et

er
 θ x2(θ), θ2(x) 

x1(θ), θ1(x) 

����
����
����
����

x1(θ0) x2(θ0) 

D(α)

θ0

Figure 32.3: Construction of the confidence belt (see text).

Upon performing an experiment to measure x and obtaining a value x0, one draws
a vertical line through x0. The confidence interval for θ is the set of all values of θ for
which the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical
line. Such confidence intervals are said to have a confidence level (CL) equal to 1 − α.

Now suppose that the true value of θ is θ0, indicated in the figure. We see from the
figure that θ0 lies between θ1(x) and θ2(x) if and only if x lies between x1(θ0) and x2(θ0).
The two events thus have the same probability, and since this is true for any value θ0, we
can drop the subscript 0 and obtain
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In addition to the goals listed above, the choice of method may be influenced by
practical considerations such as ease of producing an interval from the results of several
measurements. Of course the experimenter is not restricted to quoting a single interval
or limit; one may choose, for example, first to communicate the result with a confidence
interval having certain frequentist properties, and then in addition to draw conclusions
about a parameter using Bayesian statistics. It is recommended, however, that there be a
clear separation between these two aspects of reporting a result. In the remainder of this
section we assess the extent to which various types of intervals achieve the goals stated
here.

32.3.1. The Bayesian approach :
Suppose the outcome of the experiment is characterized by a vector of data x, whose

probability distribution depends on an unknown parameter (or parameters) θ that we
wish to determine. In Bayesian statistics, all knowledge about θ is summarized by the
posterior p.d.f. p(θ|x), which gives the degree of belief for θ to take on values in a certain
region given the data x. It is obtained by using Bayes’ theorem,

p(θ|x) =
L(x|θ)π(θ)∫

L(x|θ′)π(θ′) dθ′ , (32.30)

where L(x|θ) is the likelihood function, i.e., the joint p.d.f. for the data given a certain
value of θ, evaluated with the data actually obtained in the experiment, and π(θ) is the
prior p.d.f. for θ. Note that the denominator in (32.30) serves simply to normalize the
posterior p.d.f. to unity.

Bayesian statistics supplies no fundamental rule for determining π(θ); this reflects the
experimenter’s subjective degree of belief about θ before the measurement was carried
out. By itself, therefore, the posterior p.d.f. is not a good way to report objectively
the result of an observation, since it contains both the result (through the likelihood
function) and the experimenter’s prior beliefs. Without the likelihood function, someone
with different prior beliefs would be unable to substitute these to determine his or her
own posterior p.d.f. This is an important reason, therefore, to publish wherever possible
the likelihood function or an appropriate summary of it. Often this can be achieved by
reporting the ML estimate and one or several low order derivatives of L evaluated at the
estimate.

In the single parameter case, for example, an interval (called a Bayesian or credible
interval) [θlo, θup] can be determined which contains a given fraction 1 − α of the
probability, i.e.,

1 − α =
∫ θup

θlo

p(θ|x) dθ . (32.31)

Sometimes an upper or lower limit is desired, i.e., θlo can be set to zero or θup to infinity.
In other cases one might choose θlo and θup such that p(θ|x) is higher everywhere inside
the interval than outside; these are called highest posterior density (HPD) intervals. Note
that HPD intervals are not invariant under a nonlinear transformation of the parameter.
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• Systematic uncertainties

• Results
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Models

Neutral Current eq Scattering
Possible “new physics” processes:

Z’

e e

qq

e

qq

LQ, q~
e

LQ’

e e

qq

e e

qq

e

q

e

q
1 2 3G G G  ... Z γ

R q

For
√

s much smaller than “new” scale Λ

e e

qq

η

eeqq contact interactions (CI)

Effective Lagrangian for vector eeqq contact
interactions:

LCI =
∑

α,β=L,R
q

η
eq
αβ · (ēαγµeα)(q̄βγµqβ)

Scalar and tensor CI constrained
beyond HERA sensitivity.
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Models

Contact Interactions
Contact Interactions modify tree level eq → eq scattering amplitudes M

eq
αβ:

e

γ oZ
q q

e

q q

ee e e

qq

η

M
eq
αβ(Q

2) =
e2eq

Q2
− e2

sin2θW · cos2θW
·

ge
αg

q
β

Q2 + m2
Z

+ η
eq
αβ

γ Z◦ ?

η
eq
αβ - 4 possible couplings for every flavor q

Different models assume different helicity structure of new interactions

A.F.Żarnecki Search for contact interactions with ZEUS detector at HERA 3



Models

Cross-section formula

For NC e−p DIS with unpolarized beam

d2σe−p

dxdy
=

sx

16π

∑

q
q(x)

{

P−|Meq
LL|

2 + P+|Meq
RR|2 + (1 − y)2

[

P−|Meq
LR|

2 + P+|Meq
RL|

2
]}

+ q̄(x)
{

P−|Meq
LR|

2 + P+|Meq
RL|

2 + (1 − y)2
[

P−|Meq
LL|

2 + P+|Meq
RR|2

]}

⇒ most sensitive to η
eq
LL and η

eq
RR (q=u,d)

where: P± = (1 ± P )

P is electron beam polarization
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Models

Cross-section formula

For NC e+p DIS with unpolarized beam

d2σe+p

dxdy
=

sx

16π

∑

q
q(x)

{

P+|Meq
LR|

2 + P−|Meq
RL|

2 + (1 − y)2
[

P+|Meq
LL|

2 + P−|Meq
RR|2

]}

+ q̄(x)
{

P+|Meq
LL|

2 + P−|Meq
RR|

2 + (1 − y)2
[

P+|Meq
LR|

2 + P−|Meq
RL|

2
]}

⇒ most sensitive to η
eq
LR and η

eq
RL (q=u,d)

⇒ Combining e+p and e−p can significantly improve limits
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Data and analysis

HERA-II data
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Models

General models
Also referred to as compositeness models

Couplings η
eq
αβ are related to the “new

physics” mass scale Λ by the formula:

η =
ε · g2

CI

Λ2

where gCI is the coupling strength of
new interactions and ε = ±1.

By convention we set g2
CI = 4π.

Models conserving parity:

η
eq
LL + η

eq
LR − η

eq
RL − η

eq
RR = 0

Family universality assumed !

Models conserving parity:
Model ηed

LL ηed
LR ηed

RL ηed
RR ηeu

LL ηeu
LR ηeu

RL ηeu
RR

VV +η +η +η +η +η +η +η +η
AA +η −η −η +η +η −η −η +η
VA +η −η +η −η +η −η +η −η

X1 +η −η +η −η
X2 +η +η +η +η
X3 +η +η +η +η
X4 +η +η +η +η
X5 +η +η +η +η
X6 +η −η +η −η

U1 +η −η
U2 +η +η
U3 +η +η
U4 +η +η
U5 +η +η
U6 +η −η

Models violating parity:
LL +η +η
LR +η +η
RL +η +η
RR +η +η
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Models

Large Extra Dimensions
Arkani-Hamed–Dimopoulos–Dvali Model

If gravity propagates in the 4+δ dimensions, the
effective mass scale MS can be as low as 1 TeV.

⇒ Gravitational interactions become comparable
in strength to electroweak interactions.

The contribution of graviton (Kaluza-Klein tower)
exchange to the e±p NC DIS cross section can
be described by an effective contact interaction
type coupling:

ηG = ±λ · E2

M4
S

where λ is the coupling strength and E is related
to the energy scales of hard interaction. (

√
s, Q2)

Cross-section deviations for e−p:

0

0.2

0.4
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Models

Leptoquarks Buchmüller-Rückl-Wyler (BRW) model

• SU(3)C × SU(2)L × U(1)Y invariance

• lepton and baryon number conservation

• strong bounds from rare decays ⇒ either left- or right-handed couplings

• family diagonal

⇒ 7 scalar and 7 vector leptoquarks

For high mass leptoquarks
MLQ � √

s

both s- and u-channel important ⇒

e -

q

LQ

e -

q

λ λ

s-channel

e- e-

LQ

q
–

q
–

λ

λ

u-channel
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Models

Comparison of cross-section deviations expected in different models
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In most cases, contact interaction contribution depends mainly on Q2...
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Models

Quark form factor
“classical” method to look for possible fermion (sub)structure.

If a quark has finite size, the standard model cross-section is
expected to decrease at high momentum transfer:

dσ

dQ2
=

dσSM

dQ2
·


1 −
R2

q

6
Q2





2

·
[

1 − R2
e

6
Q2

]2

where Rq is the root mean-square radius of the electroweak
charge distribution in the quark.

We do not consider the possibility of finite electron size...

same dependence expected for e+p and e−p !
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Analysis

Probability function

Observed numbers of events in � bins �� are compared
with the CI model expectations ������ using the probability
function:

����� �
�
�

������
�
 � ���
����
���

where � runs over 14 � bins � 3 data taking periods.

��  � 


��
�

Resulting probability function for the nominal data:

ηG  [TeV-4]

P
(η

)

All data

e+p 1994-97

e-p 1998-99

e+p 1999-00

0

0.25

0.5

0.75

1

-10 -5 0 5 10

normalized to 	
�� ����� � �
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Analysis

Limit setting (1)

� Find coupling values giving best description of the data,
separately for negative and positive couplings:

example

ηG  [TeV-4]

P
(η

)

η-
0 η+

0

0

0.25

0.5

0.75

1

-5 0 5

For ED model ����� has always only one maximum:
either ��Æ or ��Æ is zero.

In general case (other CI models) two maxima can be found.

ED model, ZEUS 1994-2000 data:

��Æ � 	���� �����
��Æ � �

very good agreement with the Standard Model
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Analysis

Limit setting (2)
� Perform “MC experiments” (MCE) to find the expected
distribution of ��Æ and ��Æ for Standard Model and for ED
model with arbitrary coupling value ��

η0
-  [TeV-4]

p
(η

)

ηMC=0
(SM)

ηMC=-3ηMC=-6

η-
data

10
-3

10
-2

10
-1

1

10

-10 -7.5 -5 -2.5 0

95% CL limit on �� (for �� � �) is defined as �� value
for which 95% of Monte Carlo experiments result in ���
value lower than the value ������ found for nominal data.
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Analysis

Limit setting (3)
Method used to find 95% CL coupling limits with high (sta-
tistical) precision:

� calculate probability �����Æ � � ��������
for selected �� values (grid).

� interpolate between grid points
using polynomial fit to �����.

nominal data, no systematics
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Analysis

Limit setting

2-D probability distribution for ��� as a function of ��

� ��	Æ � ����
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Results
Public plots: CI
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Results

Public plots: LED and Rq
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Large Extra Dimensions Limits

ZEUS Preliminary
ZEUS 94-04 e+p
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Large Extra Dimensions Limits
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Quark Radius Limits
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Results

Public plots: LQ
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Limits on Heavy Leptoquarks
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Limits on Heavy Leptoquarks
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New plots

Comparison with SM
Use “LEP method” to show the agreement with SM

�� ��� � ��	�
� ��	�
Large Extra Dimensions
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Comparison with expectations

Large Extra Dimensions

Limits expected for ��
� = 0.7 TeV

default ZEUS method
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Abstract

The reaction �����	� �
��� is studied with the H1 detector at HERA. The data cover mo-
mentum transfers �� between ������������� and ������������������� and correspond to an integrated
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to set limits on scales within models of electron–quark compositeness, quark form factors
and the exchange of virtual heavy leptoquarks. A search for gravitational effects mediated
through the exchange of virtual gravitons which propagate into large extra dimensions is
presented.
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where Z ) � � � F ( is the Bjorken scaling variable and a � ) G �  G�� F $ � . The generalised proton
structure functions c �  gZ��� � $ , c �  gZ��� � $ and c e  gZ��� � $ are related to the parton densities and
the quark- � and quark- � couplings. The cross section calculations are done in the DIS scheme
in next-to-leading-order using as standard the CTEQ5D parton parameterisation [3]. Integrating
eq. (1) over Z gives the � � spectrum which describes the data very well over six orders of
magnitude, see figure 1.

In order to derive quantitative tests of the Standard Model and to search for new physics
hypotheses, a � � analysis of the data is performed taking the dominant error sources and uncer-
tainties into account. The � � function is defined as

� � ) �
�

�	�
 ��
������ � �
�� �
�  G ��� �� �   ��  $ $� �
 ��
������ � ��� � ��� � G� ����� � � �


� � 2 (2)

Here
�
 � denotes the experimental or theoretical cross section in the � � bin  and ��� is the

overall normalisation parameter with an uncertainty � �!� ) ��25��G%0 . The experimental error� �
 ��
�� includes statistical and uncorrelated systematic errors added in quadrature. The functions� �   "�  $ describe for the  �� �
bin effects due to correlated systematic errors associated to different

sources # . They depend quadratically on the fit parameters �  , which may be interpreted as
pulls, i.e. shifts caused by systematics normalised to their error estimates. There are three
sources of correlated systematic errors taken into account: the experimental uncertainties of
the positron energy scale and the scattering angle and the uncertainty of the strong coupling
entering in the Standard Model prediction (see below).

Concerning cross section calculations the major uncertainty comes from the parton distri-
butions, which are generally provided without error estimates. Different parametrisations in
the DIS scheme, MRST 99 [4] and GRV 94 [5] in addition to CTEQ5D, are used to estimate
the uncertainties due to various models and assumptions. They do not differ in the shape of
the � � spectrum significantly, but rather in the absolute cross section prediction by up to 2.8%,
e.g. comparing CTEQ5D with MRST 99. Several other MRST sets are used for cross checks,
like those with different admixtures of quarks and gluons at high Z , or different treatments of
strange and charm quarks. All these MRST variants essentially change the overall normalisa-
tion of the cross section prediction by less than G%S , being well below the measurement errors,
and introduce no relevant additional � � dependence. The largest uncertainty comes from the
strong coupling constant. Using parton distributions evaluated for couplings differing from the
central value of ^%$& �&(' $-) �32 G�G*) by

� �32 ����0 cause variations of the cross section by
� G%S at

low � � and up to +�= S at high � � . These shifts are parameterised and taken into account as
correlated systematic error in the � � fit of eq. (2). It should be noted that the applied parton
density functions have not been constrained by high � � data from the HERA experiments. A
comparison with a recent QCD analysis in the

MS scheme [6], which attempts to provide parton
distributions including errors, confirms that the above choice of various parton density functions
is a reasonable representation of systematic uncertainties.

A fit of the cross section 	�
8��	�� � to the Standard Model expectation using CTEQ5D parton
densities yields � � ��	 B!, ) G%�325�1�3G#4 with a normalisation parameter �-� ) G�25����= . Limits of a
model parameter are derived by varying the parameter until the � � value changes by a certain
amount with respect to the Standard Model fit, e.g. � � �.� � /!0 ) �321)�= for 95% confidence level
(CL). Systematics due to different parton distributions are taken into account by always quoting
the most conservative result of the various fits, i.e. the smallest value in case of a lower limit.
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Comparison with expectations

Large Extra Dimensions

Limits expected for ��
� = 0.7 TeV
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10
-3

10
-2

10
-1

1

0.4 0.6 0.8 1
10

-3

10
-2

10
-1

1

0.4 0.6 0.8 1

10
-3

10
-2

10
-1

1

0.4 0.6 0.8 1

MS
+  [TeV]

e+p 1994-97
SM

M=0.7TeV

1.9%

MS
+  [TeV]

e-p 1998-99

1.3%

MS
+  [TeV]

e+p 1999-00

2.4%

MS
+  [TeV]

All data

2.4%

10
-3

10
-2

10
-1

1

0.4 0.6 0.8 1

� H1 method results rather in 97.5% CL limits !?
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Limits on F=2 BRW LQ from ZEUS (HERA I)
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5.2 2 Dimensional Likelihood Method 105
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Figure 5.6: Distribution of selected NC DIS type events in the Mejs - cos θ�
ejs plane, for

the e−p and the e+p data. The grid indicates bins used in the likelihood analysis.

Li is the function of Ni and μi, thus also MLQ and λLQ. The two dimensional likelihood

L is the product of Poisson probabilities over all considered cos θ∗–Mljs bins:

L(MLQ, λLQ) =
∏

i

Li =
∏

i

e(−μi)
μi

Ni

Ni!
. (5.6)

In this analysis we adopted the Bayesian approach and the upper limit on the coupling

strength as a function of MLQ, λlimit(MLQ), was obtained by solving the equation1

∫ λ2
limit

0

dλ2L(MLQ, λ) = 0.95

∫ ∞

0

dλ2L(MLQ, λ). (5.7)

The confidence level of the limit calculated with this method is not exactly equal, but

is expected to be close to 95%. This assumption was verified using the so called Monte

Carlo Experiments method. More details can be found in Appendix E.

5.2.3 Theoretical Corrections

Limits calculations using the full BRW cross section formula for each reweighted Monte

Carlo event and for each λ value are very time consuming. However, for leptoquark

masses below the HERA centre-of-mass energy, limits on the leptoquark Yukawa couplings

1This corresponds to the prior assumption of a uniform λ2 distribution.



2. Calculate the global likelihood for the nominal data taking SM + LQ model expec-

tations with λ = λlim:

L′
data = L(data|SM + LQ).

3. Calculate likelihood ratio Q for our data:

Qdata =
L′

data

Ldata

=
L(data|SM + LQ)

L(data|SM)
.

4. Run MC experiments, generating numbers of observed events in each bin according

to SM + LQ expectation for λ = λlim (from Poisson distribution). For each MC

experiment calculate likelihood ratio:

QMCE =
L′

MCE

LMCE
=

L(MCE|SM + LQ)

L(MCE|SM)
.

5. After running many MC experiments, the C.L. of the limit can be defined as:

C.L. =
N(QMC > Qdata)

NMC
,

i.e. the fraction of experiments for which the QMCE value was grater than that

calculated for real data Qdata, so the agreement with SM was worse than in real

data (or agreement with SM + LQ better).

Shown in the Figures E.1, E.2 and E.3 are log10(QMC) distributions for the generated

Monte Carlo Experiments, for leptoquark and contact interaction models.

The confidence levels for the obtained coupling limits λlim, for all considered LQ models

are presented in the Figure E.4. Figure E.5 shows the confidence levels for the coupling

limits in considered CI models. Although there are few models for which calculated limit

C.L. is below 95%, most limits have C.L. higher than 95% (the average C.L. is 96% for LQ

limits and 98% for CI limits). Therefore we can conclude that using Bayesian approach

resulted in “conservative” 95% C.L. limits in most cases.

Appendix E

Confidence Level of Presented Limits

Limits presented in this thesis are determined using the so called Bayesian approach, based

on the assumption that the likelihood function can be treated as the probability density

function for the model parameter. The alternative solution would be to use the so called

frequentistic or classical approach, based on the probabilistic limit definition. In this

approach 95% C.L. limit on the model parameter (e.g. λ) is defined by the requirement

that for this parameter value the model would result in worse agreement with the SM

predictions than observed in data with probability of 95%. Unfortunately this approach

(used e.g. in analysis [57]) can not be directly applied for the finite mass leptoquark

search as it is extremely CPU consuming. However, we can ask a question: what is the

confidence level of the limits obtained with Bayesian approach.

Assume that for considered leptoquark model we get limit λlim at mass Mlim. Confi-

dence level should tell us what is the probability (calculated using MC experiments) that

the experiment assuming λ = λlim will result in worse agreement with SM that seen for

the nominal data. However, this definition is not unique – to quantify this agreement we

have to choose the so called “ordering variable”. One possible choice is to look at the λ

limit value, but this would mean we have to repeat the limit setting procedure (including

integration over λ) for each MC experiment. The other possibility is to use the likelihood

value itself. However, it turns out that it is more convenient to use the likelihood ratio

as an ’ordering variable’. In the presented analysis we use approach which was developed

by the LEP experiments in the Higgs search analysis [112].

The procedure for determining C.L. is the following:

1. Calculate global Likelihood for our nominal data, assuming SM expectations (i.e. λ=0):

Ldata = L(data|SM).
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Figure E.1: Determining confidence level of leptoquark limits: log10(Q) distribution for

the Monte Carlo Experiments assuming λ = λlim for BRW LQs models. Shown as

a hatched histogram are QMCE values smaller than Qdata.
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Figure E.4: Confidence Levels for the Yukawa coupling limits in different leptoquark

models considered in this analysis.
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Figure E.5: Confidence Levels for mass scale limits Λ− and Λ+, for different contact

interaction models considered in this analysis.
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