A Picnic with Statistics What does $10 \pm 2 \mathrm{~m}$ mean?

Piotr Nieżurawski pniez@fuw.edu.pl
Physics Faculty
Warsaw University

Warsaw, 2007.05.09

Introduction

Basic information about experiment:

- Unknown value of physical parameter which we want to determine: μ Assumptions: this parameter has really one value...
- Probability density function (p.d.f.) of expected result x for given $\mu: p(x \mid \mu)$ Assumptions: we determine it with very good precision

I assume a simplified model:

- x is a continuous random variable (warning: never true in any experiment!!!)
- $p(x \mid \mu)$ is a Gaussian p.d.f. with dispersion (standard deviation) σ_{0} :

$$
p(x \mid \mu)=G\left(x \mid \mu ; \sigma_{0}\right)
$$

One measurement x_{1}

In our experiment we measure value $x=x_{1}$. In our paper we write:

$$
\mu=x_{1} \pm \sigma_{0}
$$

What does it mean?
Classical interpretation/convention:
a value of estimator of μ is x_{1} and dispersion of $p\left(x \mid \mu=x_{1}\right)$ is σ_{0}.

Many readers will continue reasoning:
as nothing is said about $p\left(x \mid \mu=x_{1}\right)$, then it is a Gaussian p.d.f.

$$
p\left(x \mid \mu=x_{1}\right)=G\left(x \mid \mu=x_{1} ; \sigma_{0}\right)
$$

To be more precise frequentists will tell that the interval

$$
\left(\mu_{\text {down }}, \mu_{u p}\right),
$$

where

$$
\begin{aligned}
\mu_{\text {down }} & =x_{1}-\sigma_{0} \\
\mu_{\text {up }} & =x_{1}+\sigma_{0}
\end{aligned}
$$

covers true value μ with confidence level $C L=P(1 \sigma) \approx 68 \%$.
To say it they will assume that σ_{0} does not depend on μ (as we obtained in our experiment):

$$
p(x \mid \mu)=G\left(x \mid \mu ; \sigma_{0}\right)
$$

Explanation of the slang:
probability on $n-\sigma$ level, $P(n \sigma)$, is equal to

$$
P(n \sigma)=\int_{-n}^{+n} G(x \mid \mu=0 ; \sigma=1) d x
$$

Construction of frequentist confidence interval

Determine for which values of μ^{\prime}

$$
J_{x: p\left(x \mid \mu^{\prime}\right) \geq p\left(x_{1} \mid \mu^{\prime}\right)} p\left(x \mid \mu^{\prime}\right) d x \leq C L
$$

Fraction of $C L$ experiments after applying this procedure will cover with their set of μ^{\prime} values the true μ value!

What is arbitrary in this formula?
Nearly everything is up to you:

- value of $C L$,
-ordering principle, i.e. condition determining over which regions of x to integrate; here I integrate over values of x which fulfill

$$
p\left(x \mid \mu^{\prime}\right) \geq p\left(x_{1} \mid \mu^{\prime}\right)
$$

i.e. over set of x values for which value of p.d.f. \geq than value of p.d.f. for result x_{1}.

In our case, because $p(x \mid \mu)=G\left(x \mid \mu ; \sigma_{0}\right)$ and for Gaussian

$$
G\left(x \mid \mu ; \sigma_{0}\right)=G\left(x-\mu ; \sigma_{0}\right)=G\left(\mu-x ; \sigma_{0}\right)
$$

we obtain a segment:

$$
\begin{gathered}
\left(\mu_{\text {down }}, \mu_{\text {up }}\right) \\
\text { where } \mu_{\text {down }}=x_{1}-n \sigma_{0} \text { and } \mu_{\text {down }}=x_{1}+n \sigma_{0}
\end{gathered}
$$ which covers true value μ with confidence level $C L=P(n \sigma)$.

For $n=1$ we write shortly:

$$
\mu=x_{1} \pm \sigma_{0} \quad(\text { with } C L=68 \%)
$$

Frequentist confidence interval for One measurement, $C L=P(1 \sigma)$

Let's try to be better! With $C L=P(1 \sigma) \approx 68 \%$ we have:

$$
\mu=10 \pm 2 \mathrm{~m}
$$

But this looks much nicer:

$$
\mu=10.00 \pm 0.02 \mathrm{~m}
$$

And is easy to obtain! We just assume $C L=P(0.01 \sigma)$.

It's easy as well to estimate that $P(0.01 \sigma)<0.02 / \sqrt{2 \pi}<0.8 \%$.
Such small fraction of experiments will cover true value μ, thus we must have little confidence that our interval contains $\mu \ldots$

Complication I

Here we obtain $\mu_{\text {down }}=\left(x_{1}-\sigma_{0}\right) \tan \beta$ and $\mu_{\text {down }}=\left(x_{1}+\sigma_{0}\right) \tan \beta$, with $C L=P(1 \sigma)$.
What's the problem? Measured quantity x is not the estimator of μ. But $x \tan \beta$ is. After linear transformation

$$
\begin{aligned}
x_{N} & =x \tan \beta \\
\sigma_{N} & =\sigma_{0} \tan \beta
\end{aligned}
$$

we change $p(x \mid \mu)=G\left(x \mid \mu \cot \beta ; \sigma_{0}\right)$ into $p(x \mid \mu)=G\left(x_{N} \mid \mu ; \sigma_{N}\right)$ and everything is much clearer.

In our previous examples for any assumed $C L>0$ we always obtain one segment $\left(\mu_{\text {down }}, \mu_{\text {up }}\right)$ with non-zero length.

Now more interesting case!

Complication II

An experiment has a bit strange $p(x \mid \mu) \ldots$

They will report one or two intervals for μ.
Or even no one at all (for fixed earlier $C L$)!
With $C L=P(1 \sigma)$ they can obtain very narrow interval.
And in some cases they will get very narrow interval with $C L=P(5 \sigma)!!!$

Is there really μ ?

Now let's return to Gaussian p.d.fs. and read some papers about $\mu \ldots$

Second measurement: x_{2}

Other experiment reported that with $p(x \mid \mu)=G\left(x \mid \mu ; \sigma_{0}\right)$ at $C L=P(1 \sigma)$ they measured

$$
\mu=x_{2} \pm \sigma_{0}
$$

How to combine both results: $x_{1} \pm \sigma_{0}$ and $x_{2} \pm \sigma_{0}$?
Most often used procedure - calculating weighted average - gives

$$
\left(x_{1}+x_{2}\right) / 2 \pm \sigma_{0} / \sqrt{2}
$$

But what is $C L$ for this result?
Let's construct frequentist confidence interval. Probability density function for two independent measurements x and x^{\prime} :

$$
p\left(x, x^{\prime} \mid \mu\right)=G\left(x \mid \mu ; \sigma_{0}\right) G\left(x^{\prime} \mid \mu ; \sigma_{0}\right)
$$

We determine for which values of μ^{\prime}

$$
\int_{x, x^{\prime}: p\left(x, x^{\prime} \mid \mu^{\prime}\right) \geq p\left(x_{1}, x_{2} \mid \mu^{\prime}\right)} p\left(x, x^{\prime} \mid \mu^{\prime}\right) d x d x^{\prime} \leq C L
$$

Given $C L$ we can obtain one of two results (Exercise: Prove it on the figure.):

1) a segment ($\mu_{\text {down }}, \mu_{u p}$) with the middle point equal to $\left(x_{1}+x_{2}\right) / 2$ (value of estimator!),
2) empty set!!! (in this case we can increase $C L$).

$\tan \beta=\mu /\left(\mu^{2}+\mu^{2}\right)^{1 / 2}=1 / \sqrt{2}$

Simple, lucky case:

both experiments have measured the same value: $x_{1}=x_{2}$
Then, after substituting variables $x=\rho \cos \phi+\mu$ and $x^{\prime}=\rho \sin \phi+\mu$, we easily calculate (and infer from figure) that with given $C L$ we obtain $\mu_{\text {down }}=x_{1}-\rho_{0} / \sqrt{2}$ and $\mu_{u p}=x_{1}+\rho_{0} / \sqrt{2}$ where

$\rho_{0}=\sigma_{0} \sqrt{-2 \ln (1-C L)}$						
ρ_{0} $\sigma_{0} / 2$ $\sigma_{0} / \sqrt{2}$ σ_{0} $\sqrt{2} \sigma_{0}$ $1.515 \sigma_{0}$ $\rho_{0} / \sqrt{2}$ $\sigma_{0} /(2 \sqrt{2})$ $\sigma_{0} / 2$ $\sigma_{0} / \sqrt{2}$ σ_{0} $1.515 \sigma_{0} / \sqrt{2}$ $C L$ 0.118 0.221 0.393 0.632 0.683						

With $C L=P(1 \sigma)$ we obtain broader interval than for 1 measurement (around 1.07 times)! The length of the interval for given $C L$ will increase with the number of measurements.

Weighted-average-based interval in ab-ovo-approach gives coverage with only $C L \approx 40 \%$.
One obtains limits $\mu_{\text {down }}=x_{1}-\sigma_{0} / \sqrt{2}$ and $\mu_{u p}=x_{1}+\sigma_{0} / \sqrt{2}$ with $C L=P(1 \sigma)$ if 1-dimensional p.d.f. of new random variable, $\bar{x}=\left(x+x^{\prime}\right) / 2$, is used. (Exercise: Prove it.) But weighted average in the following case will work as well...

Simple, strange case:

second experiment measured value $x_{2}=x_{1}+4 \sigma_{0}$.
Then we have to choose $C L>C L_{\min }=1-e^{-4} \approx 98 \%$ to obtain non-zero segment of μ^{\prime} !
Probability of better result is $\geq C L_{\text {min }}$ for $A N Y$ value of μ.
The safe conclusion: we are $C L_{\min }$ confident that those two results are not compatible and further experiments are necessary. Probably in at least one of the experiments $p(x \mid \mu)$ is wrongly determined or we do not understand what μ is... Or we were very unlucky.

We reject with $C L_{\text {min }}$ the hypothesis that these two experiments measured the same parameter μ.

Weighted-average method still gives you $\mu_{\text {down }}=x_{1}+2 \sigma_{0}-\sigma_{0} / \sqrt{2}$ and $\mu_{u p}=x_{1}+2 \sigma_{0}+\sigma_{0} / \sqrt{2}$ with 1-dimensional confidence $C L=P(1 \sigma) \ldots$:-) This is trustworthy result only if in the $\left(x, x^{\prime}, \mu\right)$ space $C L_{\min }$ is low!

Conclusion: It is necessary to know value and method of obtaining $C L$ to judge such results as $10 \pm 2 \mathrm{~m}$.

Bayesian confidence interval

After first measurement x_{1} we calculate degree of belief for μ :

$$
p\left(\mu \mid x_{1}\right)=N p\left(x_{1} \mid \mu\right) p(\mu),
$$

where N is a normalization constant,

$$
N^{-1}=\int p\left(x_{1} \mid \mu\right) p(\mu) d \mu,
$$

and $p(\mu)$ is a prior p.d.f. describing our belief about true value of μ.
Let's assume that

$$
p(\mu)=G\left(\mu \mid \mu_{P} ; \sigma_{P}\right)
$$

After simple calculation we obtain weighted-average-like result:

$$
p\left(\mu \mid x_{1}\right)=G\left(\mu \mid\left(\sigma_{P}^{2} x_{1}+\sigma_{0}^{2} \mu_{P}\right) /\left(\sigma_{P}^{2}+\sigma_{0}^{2}\right) ; \sigma_{P} \sigma_{0} / \sqrt{\sigma_{P}^{2}+\sigma_{0}^{2}}\right)
$$

At the beginning we assume very large σ_{P} in comparison to σ_{0}, i.e. we do not know where to expect μ. Then after one measurement:

$$
p\left(\mu \mid x_{1}\right)=G\left(\mu \mid x_{1} ; \sigma_{0}\right)
$$

Before second measurement our degree of belief about μ is equal to $p(\mu)=p\left(\mu \mid x_{1}\right)=$ $G\left(\mu \mid x_{1} ; \sigma_{0}\right)$. After second measurement:

$$
\begin{aligned}
p\left(\mu \mid x_{2}, x_{1}\right) & =N^{\prime} p\left(x_{2} \mid \mu\right) p(\mu)=N^{\prime} p\left(x_{2} \mid \mu\right) p\left(\mu \mid x_{1}\right)= \\
& =G\left(\mu \mid\left(x_{2}+x_{1}\right) / 2 ; \quad \sigma_{0} / \sqrt{2}\right)
\end{aligned}
$$

And from condition

$$
\int_{\mu_{\text {down }}}^{\mu_{u p}} p\left(\mu \mid x_{2}, x_{1}\right) d \mu=C L
$$

one obtains limits (with additional, arbitrary requirement of symmetry)

$$
\begin{aligned}
\mu_{\text {down }} & =\left(x_{1}+x_{2}\right) / 2-\sigma_{0} / \sqrt{2} \\
\mu_{\text {up }} & =\left(x_{1}+x_{2}\right) / 2+\sigma_{0} / \sqrt{2}
\end{aligned}
$$

with $C L=P(1 \sigma)$.
The same precision with the same $C L$ will be reported for two very different situations: $x_{2}=x_{1}$ and $x_{2}=x_{1}+4 \sigma_{0}$.

Of course if somebody is narrow-minded, then with $\sigma_{P}=\sigma_{0} / 100$ will obtain:

$$
\begin{aligned}
& p\left(\mu \mid x_{1}\right) \approx G\left(\mu \mid \mu_{P} ; \sigma_{P}\right) \\
& p\left(\mu \mid x_{2}\right) \approx G\left(\mu \mid \mu_{P} ; \sigma_{P}\right)
\end{aligned}
$$

It is time to finish this picnic... Before the battle begins.

Conclusions

Report $C L$ and method of calculating it if conventional interpretation is false.

Be open-minded if using Bayesian method.

With frequentist method you can determine with the same procedure if result is compatible with an assumed framework $\left(C L_{\min }\right)$. Not always results with high $C L$ and narrow intervals are trustworthy.

Each method has arbitrary parameters and sub-procedures:

- frequentist: $C L$, ordering principle
- Bayesian: $C L$, ordering principle, prior p.d.f.

Usually both approaches are mixed and many approximations are involved.
Mainly we use just combinations of mean and dispersion estimators...

For your 'free' time...
Exercise: What is the result for cross section, σ, in all known to you approaches if for measured number of events, x_{N}, and measured luminosity, x_{L}, p.d.fs. $p\left(x_{N} \mid N\right)$ and $p\left(x_{L} \mid L\right)$ are known where N and L are true values of number of events and luminosity (in ideal world $N=L \sigma$).

