Plans and prospects in neutrino physics

E. Rondio Workshop, 2.11.2005

Neutrino

program

- Neutrino sources
- Evidence for oscillation and knowledge about parameters
- Open questions
- Next generation experiments and their needs for beam
- How parameters can be determined (solving ambiguities in mixing angle and CP phase)

how (anti)neutrinos can be seen

$\overline{V}_e + p \rightarrow e^+ + n$	 Large(r) cross-section Specific signature 	
 ·e⁺ kinetic energy (<8 MeV) ·2 annihilation γs (0.5 MeV) ·neutron capture (2 to 8 MeV) 	γ 8 MeV γ 511 keV n e ⁺ γ 511 keV	ΝЛЛ

Natural sources of neutrinos

Atmospheric Neutrinos

Weak decays are sources of neutrinos:

▷p, K mesons decay on the way to Earth

Some muons (µ) also decay but many reach the surface (exercise: calculate the path of a muon of 20 GeV with lifetime 2x10⁻⁶ s)

How the Sun burns

Thermonuclear fusion reactions

ppII (15%)

ppIII (0.01%)

Origins of Supernovae

Major thermonuclear reactions:

Reaction Ignition temperature (in millions of deg K)

$4 {}^{1}\text{H}> {}^{4}\text{He}$ 10	
$3 ^{4}\text{He} = ^{8}\text{Be} + ^{4}\text{He} > ^{12}\text{C}$	100
$^{12}C + ^{4}He> ^{16}O$	
$2^{12}C -> {}^{4}He + {}^{20}Ne$	600
20 Ne + 4 He> n + 23 Mg	
$2^{16}O -> {}^{4}He + {}^{28}Si$	1500
$2^{16}O -> 2^{4}He + {}^{24}Mg$	4000
$2^{28}\text{Si} \longrightarrow {}^{56}\text{Fe}$ 6000	

H → He

He → C Fe - Ni

He

High-Energy Neutrino Astrophysics

Particle Generation in AGN Jets

Proton accelerators generate roughly equal numbers of gamma rays and neutrinos

Neutrinos are not absorbed in the sources because they interact only weakly during propagation
 Many gammas are absorbed or their energy decreased during propagation

	Neutrino telescopes search for dark matter and cosmic v sources			
Detector	Location		Detection method	
Amanda Ice Cube	South pole "	1 km ³	Cherenkov light in ice "	
Baikal	Russia		Cherenkov light,water	
Antares	Mediteranian Sea		"	
Nestor	"		"	

nuclear reactors produce neutrinos

Large power plant gives: 6x10²⁰ anty-v/sek and 3 GW heatting power

Can be used for neutrino eksperiment

for example: Palo Verde

Reactor Power vs. Neutrino Flux

Reactor neutrino rate is proportional to its power!

> Anyineutrino emission is isotropic and therefore its flux decreases with square of distance from reactor!

Chooz

Neutrinos produced in accelerators

In order to have high energy neutrinos one needs to:

- > Accelerate protons
- Make those protons interact in a target to produce many mesons

 $p + p \rightarrow p + n + \pi + \pi + K + \dots$

- \succ Allow pions to decay $\pi^+ \rightarrow \mu^+ + v_{\mu}$
- Collimate pions to form a beam
- Absorb remaining charged particles at the end of the beam line
- > To avoid admixtures try to reduce decays:

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu} \qquad \qquad K^{\pm} \rightarrow \pi^{0} + e^{\pm} + \nu_{e}(\overline{\nu}_{e})$$

Neutrino production starts with acceleration of protons

Quark mixing in Standard Model

States partcipating in strong interactions with well defined masses (mass matrix eigenstates):

Staes participating in weak interactions:

$$\begin{array}{ccc} u & c & t \\ d' & s' & b' \end{array} \bigvee^{\pm} W^{\pm}$$

Quark mixing:

$$\begin{bmatrix} d' & s' & b' \end{bmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}$$

Neutrino mixing NOT in Standard Model

IF neutrinos are massive: States with well defined masses (mass matrix eigenstates):

Staes participating in weak interactions:

Lepton mixing:

$$\begin{bmatrix} v_{e} & v_{\mu} & v_{\tau} \end{bmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{bmatrix} v_{1} \\ v_{2} \\ v_{3} \end{bmatrix}$$

Describing v propagation

Evidence of oscillations in atmospheric neutrinos

• Missing v_{μ} , Effect observed in different event samples and also by other experiments Significance above 10 sigmas Angular distributions probability of v_{μ} disappearance depends on its path-lenght and energy in a way consistent with oscillation • v_{μ} survival dependence on L/E $V_{\mu} \leftrightarrow V_{\tau}$ only oscillations can produce a dip Oscillation parameters from comparison between data and MC simulations

 $0.0019 < \Delta m^2 < 0.0030 \text{ eV}^2$ $\sin^2 2.9 > 0.90 \text{ at } 90\% \text{ c.1}$

Zenith angle distributions

Oscillation probability - 2 flavors

Probability of transition from a state α to a state β :

experimental conditions:

 E_{ν} – neutrino energy (in GeV)

L – distance from a neutrino source to detector (km)

Oscillation length:

$$\sin\left(\frac{1.27\Delta m^2 L}{E_v}\right) = \sin(\pi \frac{L}{L_{osc}})$$
$$L_{osc} = \frac{2.5E_v}{\Delta m^2}$$

Appearance and disappearance experiments

In an appearance experiment one searches for neutrinos v_{β} in an initial beam of v_{α} :

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{1.27 \Delta m^2 L}{E_{\nu}}\right)$$

In a disappearance experiment one counts how many of the initial neutrinos v_{α} are left after passing a distance *L*:

$$P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 1 - \sin^2 2\theta \, \sin^2 \left(\frac{1.27 \Delta m^2 L}{E_{\nu}}\right)$$

Note: Neutrino oscillate only if masses are non-zero and not the same

$$\Delta m_{ij}^2 = 0 \longrightarrow P(\nu_{\alpha} \to \nu_{\beta}) = 0$$

$$\Delta m^2 = m_1^2 - m_2^2$$

Sensitivity to oscillations

 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(\frac{1.27 \Delta m^2 L}{E_{\nu}}\right)$

	E_{ν} (MeV)	L (m)	Δm^2
Supernovae	<100	>10 ¹⁹	10 ⁻¹⁹ - 10 ⁻²⁰
Solar	<14	1011	10-10
Atmospheric	>100	104 -107	10-4
Reactor	<10	<10 ⁶	10 ⁻⁵
Accelerator with	>100	10 ³	10-1
short baseline			
Accelerator with	>100	<10 ⁶	10 ⁻³
long baseline			

Rough estimate of Δm^2

 E_{ν} – neutrino energy (inGeV) L – distance (km)

Max probability of oscillation for $L=L_{osc}/2$ Δm^2 Find corresponding

Down, L=15 km Up, L=12000 km $\approx 0.0001 \,\mathrm{eV}^2$ 0.08 eV^2 For E_v=1 GeV $\approx 0.001 \, \mathrm{eV}^2$ For E_v=10 GeV $0.8 \,\mathrm{eV}^2$ 8 eV^2 $\approx 0.01 \text{ eV}^2$ For E_v=100 GeV The trouble is - we don't know precisely E,

"From neutrinos to cosmic sources", D. Kiełczewska and E. Rondio

Atmospheric Neutrinos: SuperKamiokande –

(Neutrino04)

L/E distribution - direct oscilation signal

Results of combined fit $v_{\mu} \leftrightarrow v_{\tau}$

<u>K2K - K</u>EK to <u>K</u>amioka Neutrino Oscillation Experiment

- \mathbf{v}_{μ} (99%) beam
- $< E_v > \sim 1.3 \text{GeV}$
- •Near detector @300m •Far detector: Super Kamiokande(SK) @250km
- •Sensitive for
 - $\Delta m^2 > 2x10^{-3} eV^2$

Event selection at Super-Kamiokande

$$\Delta T \equiv T_{SK} - T_{spill} - \mathsf{TOF}$$

requiring $-0.2 \le \Delta T \le 1.3 \,\mu \text{s}$

Expected number of atmospheric v BG: <10⁻³ events

Observation of v_{μ} oscillation in K2K b) energy spectrum modulation

As by product sensitivity to $v_{\mu} \rightarrow v_{e}$ is also there (limited by statistics and v_{e} beam contamination)

Experiments with v from accelerators

name	accelerator	det. technique	distance	mass	
K2K	KEK	water Cherenkov	250 km	50kt	
MiniBoon	e Fermilab	liquid scintillator	0.5 km		
MINOS	Fermilab (NuMi)	iron/scintillator	750 km	4.5kt	
Icarus	CERN	liquid argon TPC	730 km	3 kt	
Opera	CERN	lead/emulsion	730 km	2 kt	
longer term future:					

JHF to SuperKamiokande

300 km 500kTon

Spectrum of solar neutrinos

Solar neutrino detectors

name	location	mass	reaction	start
Homestake	S.Dakota USA	615	³⁷ Cl(v _e ,e ⁻) ³⁷ Ar	1968
SAGE	Baksan, Russia	50	⁷¹ Ga (v _e ,e ⁻) ⁷¹ Ge	1990
Galex/GNO	Gran Sasso, Italy	30	⁷¹ Ga (v _e ,e ⁻) ⁷¹ Ge	1992
Kamiokande	Kamioka, Japan	2000	$v_x e^- \rightarrow v_x e^-$	1986
Super Kamiokande	Kamioka, Japan	50000	$v_x e^- \rightarrow v_x e^-$	1996
SNO	Sudbury,	8000	v _e d→ e⁻ pp	1999
	Canada		$v_x d \rightarrow v_x np$	2001
			$v_x e^- \rightarrow v_x e^-$	1999

Solar ν Interactions in SNO

Elastic Scattering (ES) $u_x + e^- ightarrow u_x + e^-$

- Directional sensitivity (e^- forward peaked)
- Cross-section for ν_e is $6.5 \times$ larger than for $\nu_{\mu\tau}$

Charged Current (CC) $u_e \,+ d ightarrow p + p + e^-$

- Some directional information $(1 \frac{1}{3}\cos\theta_{e\nu})$
- good E_{ν} sensitivity (ν_e spectrum)

Neutral Current (NC) $u_x + d ightarrow n + p + u_x$

- Total flux of active neutrinos above 2.2 MeV
- \bullet Detect neutrons by $n+d \rightarrow t+6.25~{\rm MeV}~\gamma$

Neutrons in Salt → NaCl Capture Higher capture cross section n 🌔 • Higher energy release 1 36CI Many gammas 35CI 36CI 1.8 Events/day CC Electrons • $\sigma = 44 \text{ b}$ Neutrons in pure D₂O 1.6 Neutrons in salty D,O ³⁵Cl+n 1.4 σ = 0.0005 b 8.6 MeV 1.2

Comparison with phase I

╘

3055 candidate events 254 live days

 $\Phi_{SSM} = 5.05^{+1.01}_{-0.81}$

Pure D₂O (phase I)

Salt (phase II)

⁸B shape constrained

$$\begin{split} \Phi_{CC}^{I-cons.} &= 1.76^{+0.06}_{-0.05}(stat.)^{+0.09}_{-0.09}(syst.) \\ \Phi_{ES}^{I-cons.} &= 2.39^{+0.24}_{-0.23}(stat.)^{+0.12}_{-0.12}(syst.) \\ \Phi_{NC}^{I-cons.} &= 5.09^{+0.44}_{-0.43}(stat.)^{+0.46}_{-0.43}(syst.) \\ \Phi_{CC}^{II-cons.} &= 1.70 \pm 0.07(stat.)^{+0.09}_{-0.10}(syst.) \\ \Phi_{ES}^{II-cons.} &= 2.13^{+0.29}_{-0.28}(stat.)^{+0.15}_{-0.08}(syst.) \\ \Phi_{NC}^{II-cons.} &= 4.90 \pm 0.24(stat.)^{+0.29}_{-0.27}(syst.) \end{split}$$

က	CC	1339	.6 ^{+63.8} +61.5	
EN.	ES	170	3 +23.9 +20.1	
¥,	NC	1344	.2 ^{+69.8}	
	84 exter	nal-sourc	e neutrons	5
The measurement from phase I were confirmed with better precisi				
*	evidence in their	for $v_{\mu/ au}$ flighttrom	appearan n the Sun	се
* 1	the total $\Phi_{ m NC}$	neutrino gagrees v	flux (all f vith SSM	lavo

 $\Phi_{NC}^{II-unc.} = 5.21 \pm 0.27(stat.) \pm 0.38(syst.)$

Results of all the solar experiments

MSW Effect

If v_e and v_x have different interactions:

MSW effect

One can define effective (matter) mixing angle and mass difference :

Note that matter effects are sensitive to:

$$\vartheta' \rightarrow \frac{\pi}{2} - \vartheta$$

Oscillation parameters of solar v with SNO results

Only so called LMA (large mixing angle) solution remained with SNO results

Bahcall, Gonzales-Garcia and Pena-Garay, hep-ph/0212147

KamLAND - results

KamLAND - evidence of spectral distortion

ratio= observed/expected assuming a single reactor at L_0 = 180km

Mixing matrix

Summary - Evidence for neutrino oscillations

Neutrino eigenstates with definite flavor are mixtures of states of definite mass.

$$\nu_{\mu} \rightarrow \nu_{\tau} \Delta m_{23}^2 \approx 0.002 \, eV^2$$

* solar

$$V_e \rightarrow V_{\mu/\tau} \Delta m_{12}^2 \approx 0.00006 \, eV^2$$

Sources of neutrinos for future studies:

- Beta beams
- Super beams
- Neutrino factories

A BETA-BEAM FACILITY FOR LOW ENERGY NEUTRINOS.

SITES

Neutrino-nucleus measurements

What is a Superbeam?

A Superbeam is a "conventional" v-beam where the vs are produced by π (and K) decay but at a much higher intensities

What is a Neutrino Factory?

A Neutrino Factory is a machine where the v-beam is produced by μ decay, which are in turn produced by the decay of π s. The μ beam is of good quality and may open the way to μ colliders (the ultimate high energy for lepton colliders)

Future plans for neutrino beams

Superbeams

Superbeams -convenctional beams with high intensity

Neutrino Factories

neutrino factories - new type of accelerator

Plans for future neutrino beams

Neutrinos from Low E Protons Limited scope of physics topics

Minimize backgrounds from higher energies

Specialized study of very low-energy phenomena Neutrinos from Higher E Protons Extended scope of physics topics to cover quasi-elastic to DIS

Must understand/study "backgrounds"

Neutrino energies similar to JLab

MINOS Long-Baseline Experiment: NuFact 05 R. Plunkett Page 8

★ Demonstrate oscillation behaviour

- confirm flavour oscillations describe data
- provide high statistics discrimination against alternative models:

decoherence, v decay, extra dimensions, etc.

\star Precise Measurement of Δm_{23}^2

• ~10 %

- ***** Search for sub-dominant $v_{\mu} \rightarrow v_{e}$ oscillations
 - first measurements of θ_{13} ?

MINOS is the 1st large deep underground detector with a B-field

 first direct measurements of V vs V oscillations from atmospheric neutrino events Next generation LBL experiments in Japan "J-PARC - Kamioka neutrino project"

First superbeam

Neutrino factories

- high flux
- how? wait longer to allow μ decays
 this requires a muon storage ring
 beam can be very clean
 v_ev_μ or v_ev_μ with μ⁺ or μ⁻

stored in the ring

needed for rare events and CP violation searches

Cooling muon beam has to be collimated • Muons produced with random momenta; must be cooled Factor 10-100 for neutrino source (acceptance of accelerator) Factor 10⁶ for a collider - CRITICAL

Ionisation cooling is leading scheme

- · In an axial Magnetic field, this reduces transverse emittance
- · But beam blow-up and losses from multiple scattering must be checked

concept of ionization cooling:

- energy loss in longitudinal and transverse direction,
- acceleration in RF cavity (only in required direction)

Full scale project: v factory and μ collider

2000-05-16 ¥ Peter Gruber, CERN-PS

What are the Open Questions in Neutrino Physics From the APS Multi-Divisional Study on the Physics of Neutrinos

- What are the masses of the neutrinos?
- What is the pattern of mixing among the different types of neutrinos?
- Are neutrinos their own antiparticles?
- Do neutrinos violate the symmetry CP?
- Are there "sterile" neutrinos?
- Do neutrinos have unexpected or exotic properties?
- What can neutrinos tell us about the models of new physics beyond the Standard Model?

The answer to almost every one of these questions involves understanding how neutrinos interact with matter!

Why do we need an \overline{v} Beam? Control v/\overline{v} systematics at the 1 percent level for mass hierarchy and CP studies.

Jorge G. Morfín - Neutrino Scattering Physics

Super-beams programs

T2K

- Begin operations in 2009 with
 - 50 kilo-ton SK detector
 - Beam power ramping up to 0.7 MW
- 2015+
 - Beam power increases to 4 MW
 - 1 Mton Hyper-Kamiokande

NOvA

- Begin operations in 2009 with
 - 0.7 MW NuMI beam
 - 30 kilto-ton liquid scintillator tracker
- 2015+
 - Beam power increases to 2 MW
 - Add 2nd ~100 kilo-ton detector?

BNL

- Still in proposal stage
- New 1 MW neutrino beam
- New megoton detector at Homestake

CERN SPL-Frejus

- Still in proposal stage
- New 4 MW neutrino beam
- New ~megton detector at Frejus

T2K Phase 2 Sensitivity

Superbeams in the United States

NOvA sensitivity with proton driver

Gary Feldman WIN'05

Towards precision neutrino physics

Solar neutrinos (Bari group), 2005

