Determining \tan (beta) at the Photon Collider

Physics at Future Colliders workshop 2005/2006

A.F.Żarnecki
30-11-2005

Outline:

- How to measure tan(beta)
- tau-tau fusion process at the Photon Collider
- First results from experimental study

Theories beyond the Standard Model (SM) that resolve the hierarchy and fine-tuning problems typically involve extensions of its single-doublet Higgs sector to at least a two-doublet Higgs sector (2HDM) [1]. The most attractive such model is the Minimal Supersymmetric Standard Model (MSSM), which contains a constrained two-Higgs-doublet sector [2]. In other cases, the effective theory below some energy scale is equivalent to a 2 HDM extension of the SM with no other new physics. Searching for the Higgs particles and studying their properties have high priority for both theoretical and experimental activities in high energy physics.

Among other new parameters in 2HDM and SUSY theories, one is of particular importance: the ratio of the vacuum expectation values of the two Higgs fields, commonly denoted as $\tan \beta=v_{2} / v_{1}$. It characterizes the relative fraction that the two Higgs doublets contribute to the electroweak symmetry breaking $v^{2}=v_{1}^{2}+v_{2}^{2}$, where $v \approx 246 \mathrm{GeV}$. The five physical Higgs states couple to the fermions at tree-level [1, 2] as

$$
\begin{array}{ll}
h \bar{t} t:-i \frac{m_{t}}{v} \frac{\cos \alpha}{\sin \beta} \approx-i \frac{m_{t}}{v} & h \bar{b} b: i \frac{m_{b}}{v} \frac{\sin \alpha}{\cos \beta} \approx-i \frac{m_{b}}{v} \\
H \bar{t} t:-i \frac{m_{t}}{v} \frac{\sin \alpha}{\sin \beta} \approx i \frac{m_{t}}{v} \cot \beta & H \bar{b} b:-i \frac{m_{b}}{v} \frac{\cos \alpha}{\cos \beta} \approx-i \frac{m_{b}}{v} \tan \beta \\
A \bar{t} t:-\frac{m_{t}}{v} \cot \beta \gamma_{5} & A \bar{b} b:-\frac{m_{b}}{v} \tan \beta \gamma_{5} \\
H^{+} \bar{t} b: i \frac{V_{t d}}{\sqrt{2} v}\left[m_{b} \tan \beta\left(1+\gamma_{5}\right)+m_{t} \cot \beta\left(1-\gamma_{5}\right)\right], \tag{4}
\end{array}
$$

where α is the mixing angle in the CP-even sector, and the approximation indicates the decoupling limit for $m_{A} \gg m_{Z}$ in the MSSM [3, 价, in which the couplings of the light Higgs boson h become SM-like. Eqs. (2)-(4) show that $\tan \beta$ governs the coupling strength of Yukawa interactions between the fermions and the heavy Higgs bosons. In fact, heavy Higgs boson measurements sensitive to their Yukawa couplings are far and away the most direct way to probe the structure of the vacuum state of the model as characterized by the ratio of vacuum expectation values that defines $\tan \beta$.

5σ discovery contours

S.Lehti
 Physics at LHC

Wien, 13-17 July 2004
$30 \mathrm{fb}^{-1}$ at low luminosity ($2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$) max m_{h} SUSY scenario

$\mathrm{H}_{\text {SUSY }} \rightarrow \tau \tau \rightarrow \mathrm{X}$ most promising channel for discovering heavy neutral MSSM Higgs boson at large $\tan \beta$

Uncertainty of $\tan \beta$ measurement

At large $\tan \beta \sigma \sim \tan ^{2} \beta \times X$, subleading $\tan \beta$ dependence small, can be absorbed into $\tan \beta_{\text {eff }}$

$$
\mathrm{N}_{\mathrm{S}}=\tan ^{2} \beta \times \mathrm{X} \times \mathrm{L} \times \varepsilon_{\mathrm{sel}}
$$

$$
\begin{gathered}
\tan \beta=\tan \beta_{0} \pm \Delta \text { stat } \pm \Delta \text { syst } \\
\text { Max error: } \\
\Delta \tan \beta / \tan \beta=1 / 2\left(\Delta \mathrm{~N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{S}}+\Delta \mathrm{L} / \mathrm{L}+\Delta \mathrm{X} / \mathrm{X}\right) \\
=1 / 2\left(\operatorname{sqrt}\left(\mathrm{~N}_{\mathrm{S}}+\mathrm{N}_{\mathrm{B}}\right) / \mathrm{N}_{\mathrm{S}}+\Delta \mathrm{L} / \mathrm{L}+\Delta \mathrm{X} / \mathrm{X}\right)
\end{gathered}
$$

Luminosity error assumed $\Delta \mathrm{L} / \mathrm{L} \sim 5 \%$
Theoretical error $\Delta \sigma / \sigma \sim 20 \%, \Delta B R / B R \sim 3 \%$
Uncertainties of the background and signal selection efficiency, and the accuracy of the SUSY parameter measurement not yet taken into account. (Uncertainty of the selection (s+b) efficiency expected $\sim 5 \%$)

Uncertainty of $\tan \beta$ measurement

Small error bars (gray): stat error only
Large error bars: total error

- Because of background and other issues, an $e^{+} e^{-}$collider with sufficient energy to pair produce non SM-like Higgs bosons, $e^{+} e^{-} \rightarrow H^{0} A^{0}$, is the ideal.
- At low $\tan \beta$, look at $e^{+} e^{-} \rightarrow H^{0} A^{0} \rightarrow b \bar{b} b \bar{b}$ rate.

Rate varies as $b \bar{b} b \bar{b}$ branching ratio goes from modest level to being dominant.
Presence of modest SUSY decays helps in that $b \bar{b} b \bar{b}$ rate varies significantly out to much larger $\tan \beta$ than if no SUSY decays are present.

- At high $\tan \beta$, look at $\left\langle\Gamma_{\text {tot }}^{H^{0}}, \Gamma_{\text {tot }}^{A^{0}}\right\rangle$.

Recall that the decay widths become dominated at high $\tan \beta$ by $b \bar{b}$ and $\tau^{+} \tau^{-}$, growing as $\tan ^{2} \beta$.

- For heavier masses and/or only one light non-SM-like Higgs, $e^{+} e^{-} \rightarrow$ $b \bar{b} H^{0} \rightarrow b \bar{b} b \bar{b}$ and/or $e^{+} e^{-} \rightarrow b \bar{b} A^{0} \rightarrow b \bar{b} b \bar{b}$ rate(s) do the job at high $\tan \beta$.

Here, the rates are very sensitive to the $b \bar{b} A^{0}, b \bar{b} H^{0}$ Yukawa couplings that are proportional to $\tan \beta$.

We see significant sensitivity of the $\tan \beta$ errors from $H^{0} A^{0} \rightarrow b \bar{b} b \bar{b}$ rates to the scenario choice, with the errors worse for scenario (I).
Errors for $\tan \beta$ from the $b \bar{b} H^{0}+b \bar{b} A^{0} \rightarrow b \bar{b} b \bar{b}$ rate are essentially independent of the scenario choice. Running m_{b} has big impact on these errors.
All results employ couplings and widths ala HDECAY.

$M_{A}=\mathbf{3 0 0} \mathbf{~ G e V}$

Final results

$\gamma \gamma \rightarrow$ hadrons (resolved) as a separate contribution - ineffi cient generation
\Rightarrow we estimate number of events in the mass window
$\gamma \gamma \rightarrow q \bar{q}(q=u, d, s)$ (unpolarized cross sec.) is overestimated
but compensates the lack of resolved contribution

Precision for $\sigma(\gamma \gamma \rightarrow A, H \rightarrow b \bar{b})$

$$
\Delta \sigma(\gamma \gamma \rightarrow A, H \rightarrow b \bar{b}) / \sigma(\gamma \gamma \rightarrow A, H \rightarrow b \bar{b})
$$

Symbol	μ [GeV]	$A_{\tilde{f}}[$ [GeV]
I	200	1500
II	-150	1500
III	-200	1500
IV	300	2450

Precision

$$
\frac{\Delta \sigma}{\sigma}=\frac{\sqrt{\mu_{S}+\mu_{B}}}{\mu_{S}}
$$

project

SPS1a'- derivative of the SPS1a point

 mSUGRA values:$$
\begin{aligned}
& B R(b \rightarrow s \gamma)=3.0 \times 10^{-4} \\
& \Delta\left[g_{\mu}-2\right] / 2=33 \times 10^{-10} \\
& \Omega_{c d m} h^{2}=0.10
\end{aligned}
$$

Susy parameter determination in combined analyses at LHC/LC

K. Desch, J. Kalinowski, G. Moortgat-Pick, M.M. Nojiri and G. Polesello

in Physics Interplay of the LHC and ILC hep-ph/0410364

The neutralino mixing matrix in the $\left\{\tilde{\gamma}, \tilde{Z}^{0}, \tilde{H}_{1}^{0}, \tilde{H}_{2}^{0}\right\}$ basis is given by

$$
\mathcal{M}_{N}=\left(\begin{array}{cccc}
M_{1} \cos _{W}^{2}+M_{2} \sin _{W}^{2} & \left(M_{2}-M_{1}\right) \sin _{W} \cos _{W} & 0 & 0 \\
\left(M_{2}-M_{1}\right) \sin _{W} \cos _{W} & M_{1} \sin _{W}^{2}+M_{2} \cos _{W}^{2} & m_{Z} & 0 \\
0 & m_{Z} & \mu \sin 2 \beta & -\mu \cos 2 \beta \\
0 & 0 & -\mu \cos 2 \beta & -\mu \sin 2 \beta
\end{array}\right)(5.44)
$$

The neutralino eigenvectors and their masses are obtained with the 4×4 diagonalisation matrix N :

$$
\begin{equation*}
N^{*} \mathcal{M}_{N} N^{\dagger}=\tilde{f} \operatorname{diag}\left\{m_{\tilde{\chi}_{1}^{0}}, \ldots, m_{\tilde{\chi}_{4}^{0}}\right\} \tag{5.45}
\end{equation*}
$$

LHC

Figure 5.38: Invariant mass spectrum respectively for: Opposite-Sign Same-Flavour (OS-SF) leptons total (full dots), Opposite-Sign Opposite-Flavour (OS-OF) leptons total (solid line), Opposite-Sign Same-Flavour leptons in the SM (dashed line). The signals of $\tilde{\chi}_{2}^{0}, \tilde{\chi}_{4}^{0}$ consist of OS-SF leptons [45].
b) Joint analysis of the LC and LHC data

SUSY Parameters				Mass Predictions	
M_{1}	M_{2}	μ	$\tan \beta$	$m_{\tilde{\chi}_{2}^{ \pm}}$	$m_{\tilde{\chi}_{3}^{0}}$
99.1 ± 0.2	192.7 ± 0.5	352.4 ± 4.5	10.2 ± 0.9	378.5 ± 4.1	358.8 ± 4.1

Table 5.22: SUSY parameters with 1σ errorserved from the analysis of the LC data collected at the first phase of operation and with $\delta m_{\tilde{\chi}_{4}^{0}}=5.1 \mathrm{GeV}$ from the LHC. Shown are also the predictions for the masses of $\tilde{\chi}_{2}^{ \pm}$and $\tilde{\chi}_{3}^{0}$.

$\underline{\text { Methods to determine } \tan \beta \text { for large values beyond } \tan \beta=10}$

$\begin{aligned}(\text { a) charginos } / \text { neutralinos } \Rightarrow & \cos 2 \beta \text { slope } \sim 1 / \tan ^{3} \beta \quad \text { Choi et al } \\ & \text { insensitive }\end{aligned}$
(b) τ polarization etc $\quad \Rightarrow \sim 10 \%$

Boos et al
(c) $b b H / A, H / A$ widths etc $\Rightarrow \mathrm{LHC} / 300 \mathrm{fb}^{-1}: 12$ to $4 \% \quad$ Gunion et al

$$
\Rightarrow \mathrm{LC} / 2,000 \mathrm{fb}^{-1}: 5 \text { to } 3 \% \text { at } M_{A}=200 \mathrm{GeV}
$$

(d) LHC $\operatorname{sim} H / A \rightarrow \tau \tau \quad \Rightarrow 30 \mathrm{fb}^{-1} \sim 20 \%$

Kinnunen et al
(e) $\gamma \gamma \rightarrow H / A \rightarrow b \bar{b} \quad \Rightarrow \sim 4$ to 10% [estimate] see: Niezurawski et al and Velasco et al
$\underline{\text { Additional methods strongly required for precision analysis of } \tan \beta}$

Determining $\tan \beta$ in $\tau \tau$ Fusion to SUSY Higgs Bosons at a Photon Collider

S.Y.Choi, J.Kalinowski, J.S.Lee, M.M.Mühlleitner, M.Spira,

> P.M.Zerwas
hep-ph/0404119

New method: Tauon fusion of Higgs $h / H / A /$ at $\gamma \gamma$ collider:

$$
\gamma \gamma \rightarrow\left(\tau^{+} \tau^{-}\right)\left(\tau^{+} \tau^{-}\right) \rightarrow \tau^{+} \tau^{-}+h / H / A
$$

couplings: for large $\tan \beta$

$$
\begin{array}{lc}
A \tau \tau=\tan \beta, H \tau \tau \simeq \tan \beta & \text { for } A, H \text { heavy } \\
h \tau \tau \simeq \tan \beta & A \text { light }
\end{array}
$$

Higgs decays: $h / H / A \rightarrow b b$ at 90% level \Rightarrow SPS1b

SIGNAL: in equivalent-particle approximation
$\sigma_{\gamma \gamma} \approx 2 \int d x_{1} D_{\tau / \gamma}\left(x_{1}\right) \int d x_{2} D_{\tau / \gamma}\left(x_{2}\right) \times \hat{\sigma}\left[\tau \tau \rightarrow \Phi ; \hat{s}=x_{1} x_{2} s\right]$
fusion coss-section:
$\hat{\sigma}[\tau \tau \rightarrow \Phi ; \hat{s}] \approx \frac{\pi m_{\tau}^{2}}{2 v^{2}} \tan ^{2} \beta \frac{m_{\Phi} \Gamma_{\Phi} / \pi}{\left(\hat{s}-m_{\Phi}^{2}\right)^{2}+m_{\Phi}^{2} \Gamma_{\Phi}^{2}}$
splitting function $\gamma \rightarrow \tau$:
$D_{\tau / \gamma}(x)=\frac{\alpha}{2 \pi}\left[x^{2}+(1-x)^{2}\right] \log \left(\frac{m_{\Phi}^{2}}{m_{\tau}^{2}}\right)$
$\gamma \gamma$ cross section [narrow-width approximation]:
$\sigma_{\gamma \gamma} \approx \frac{\pi m_{\tau}^{2}}{2 v^{2} s} \tan ^{2} \beta \times 2 \int_{\tau}^{1} \frac{d x}{x} D_{\tau / \gamma}(x) D_{\tau / \gamma}(\tau / x)$ with $\tau=M_{\Phi}^{2} / s$

BKGDs: $\underline{\text { annihilation: }} \tau^{+} \tau^{-} \rightarrow b \bar{b}$ and $b \bar{b} \rightarrow \tau^{+} \tau^{-} \quad$ via $\gamma, Z:$

suppressed $\sim g^{2}$, except: $M_{b b} \sim M_{Z}$

$$
M_{\tau \tau} \sim M_{Z}
$$

diffractive: $\gamma \gamma \rightarrow(\tau \tau)(b b)$:

suppr. by event topology: $\tau \tau$ small inv mass / same direction
$b b$ ditto / close to γ axes

ANALYSIS:

signal: including Higgs-bremsstrahlung off external legs

$$
\gamma \gamma \rightarrow \tau \tau+h / H / A[\rightarrow b b]
$$

bkgds: all non-Higgs 4-particle final states in $\gamma \gamma \rightarrow(\tau \tau)(b b)$ calculated by means of CompHEP
cuts: $M_{b b}=M_{\Phi} \pm \Delta$ with $\Delta=\max \left[\Gamma_{\Phi} / 2, \Delta_{e x}\right] \rightarrow \Delta_{e x}=0.05 \times M_{\Phi}$
τ polar angle $\geq 130 \mathrm{mrad}$ [shielding: dead mask]
τ energy $\geq 5 \mathrm{GeV}$
τ^{+}and τ^{-}in opposite directions along beam axis
efficiencies: $\epsilon_{b b} \sim 0.7$ and $\epsilon_{\tau \tau} \sim 0.5 \rightarrow \epsilon \sim 0.35$

RESULTS: $\quad E_{e^{-} e^{-}}=800 / 500 \mathrm{GeV} \Rightarrow E_{\gamma \gamma}=600 / 400 \mathrm{GeV}$ $\mathcal{L}=200 / 100 \mathrm{fb}^{-1}$
(a) Cross sections $h / H / A$: for $\tan \beta=10$ to 50
$\sigma(H / A)=3$ to 1 fb for $M_{A / H}=100$ to 500 GeV at $\tan \beta=30$ $\sigma(h)=5 \mathrm{fb}$ for $M_{h}=110 \mathrm{GeV}$ at $\tan \beta=30$
(b) Errors \Leftarrow matching and improving on alternative methods:

SUMMARY:

$\Delta \tan \beta \simeq 0.9$ to 1.3 uniform in $\tan \beta$

 for all M_{A} up to kin. limitResults are encouraging enough to start experimental simulations including detector effects, overlaying events, optimized cuts, etc.

First Results from an Experimental Study of $\tan \beta$ Measurement in $\tau \tau$ Fusion Process

J. Brodowska
with A.F. Żarnecki and P. Nieżurawski
Warsaw University

Outline

- Motivation
- Generator level results
- Detector level results

Event generation

Signal events $\gamma \gamma \rightarrow \tau \tau h \rightarrow \tau \tau b \bar{b}$
and background events $\gamma \gamma \rightarrow \tau \tau b \bar{b}$ (excluding h exchange)
were generated using CompHEP 33.23 (A.Pukhov et al. hep-ph/9908288)
Realistic luminosity spectra for Photon Collier was included with CompAZ (A.F.Zarnecki, Acta Phys.Polon. B34 (2003) 2741)

Photon polarization was taken into account.
For $\sqrt{s_{e e}}=500 \mathrm{GeV}$, integrated luminosity expected after one year is $1000 \mathrm{fb}^{-1}$
About $130 \mathrm{fb}^{-1}$ in the high energy peak ($W_{\gamma \gamma}>300 \mathrm{GeV}$)

Cuts imposed on generator level:

- $b \bar{b}$ invariant mass $80<M_{b b}<150 \mathrm{GeV}$
- For both τ : energy $E_{\tau}>5 \mathrm{GeV}$
- For all particles: production angle $|\cos \theta|<0.99156$ (130 mrad)

Generator level results

Invariant mass distribution on generator level
$M_{h}=110 \mathrm{GeV}, \tan \beta=5$

Generator level results

From number of events reconstructed in the $\pm 5 \mathrm{GeV}$ mass window:

Cross section for $M_{h}=110 \mathrm{GeV}$ and $\tan \beta=30$

$$
\sigma(\gamma \gamma \rightarrow \tau \tau h \rightarrow \tau \tau b \bar{b}) \approx 3.6 \mathrm{fb}
$$

about 25% lower than or monochromatic beam, but total luminosity is an order of magnitude higher!

Experimental analysis

The analysis follows the approach developed in $\gamma \gamma \rightarrow h \rightarrow b \bar{b}$ analysis.
\Rightarrow for details see: P.Niezurawski, hep-ph/0503295.

Experimental details taken into account:

- crab-wise crossing of the beams, $\theta_{c}=34 \mathrm{mrad}$
- primary vertex distribution
- overlaying events $\gamma \gamma \rightarrow$ hadrons (OE) generated with PYTHIA using realistic $\gamma \gamma$-luminosity spectrum (V. Telnov)
- Description of detector performance: Simdet 4.01
- Zvtop-B-Hadron-Tagger package used for b-tagging
- Jets reconstructed using Durham algorithm

Event selection

Reconstructed invariant mass of two b-tagged jets $\quad\left(M_{h}=110 \mathrm{GeV}\right.$, $\left.\tan \beta=10\right)$ Tag value $P_{b}>0.6$ and $\left|\cos \theta_{j}\right|<0.75$

Selection efficiency $\sim 20 \%$ only !
Mainly due to large boost of $b \bar{b}$ system

Mass resolution affected by

- boost of $b \bar{b}$ system
- overlying events
(2 per bunch crossing, on average)
- escaping neutrinos from semi-leptonic b decays

Generator level results

Boost of $b \bar{b}$ system

Invariant mass of $\tau^{+} \tau^{-}$pair

Event selection

Semi-leptonic b decays can be identified by reconstructing leptons in b-tagged jets.
Cosine of the angle between reconstructed lepton and b-jet:

Event selection

Reconstructed invariant mass for two b-tagged jets: $P_{b}>0.6$ and $\left|\cos \theta_{j}\right|<0.75$, after additional requirement $\cos \theta_{l b}<0.9$: selection efficiency down to $\sim 10 \%$!

Detector level results

Reconstructed invariant mass of two b-tagged jets for signal events

with lepton cut

Detector level results

Reconstructed invariant mass distribution for two b-tagged jets, for signal ($M_{h}=110 \mathrm{GeV}$, $\tan \beta=10$) and background events
without lepton cut

with lepton cut

\Rightarrow cut against semi-leptonic b decays allows to separate h and Z° peaks

Detector level results

Reconstructed invariant mass of two b-tagged jets for signal and background events $\quad\left(M_{h}=130 \mathrm{GeV}\right)$
without lepton cut

with lepton cut

Detector level results

Expected precision of $\tan \beta$ determination:
after b selection cuts only and after tagging of leptonic τ decays using $\pm 10 \mathrm{GeV}$ mass window

τ identification

Angular distributions of:

signal and background τ

hadrons from OE

Identification of hadronic τ decays can be very difficult...

Conclusions

First experimental study of $\gamma \gamma \rightarrow \tau \tau h$ process
Preliminary results not very promising, but:

- No $b \bar{b}$ selection optimization (!)
- Simple mass window approach
- No τ identification algorithm (hadronic decays)
\Rightarrow room for improvements
- No reducible background simulation
e.g. $\gamma \gamma \rightarrow b \bar{b}$ with OE
\Rightarrow is it possible to reconstruct hadronic τ decays in the forward region?

