RPC PAC muon trigger of the CMS detector

Karol Buńkowski Warsaw University

Physics at Future Colliders, January 11, 2006

Physics at Future Colliders, Jan. 11 2006

Need for trigger

2 × 2875 proton bunches

10¹¹ protons / bunch

E = 7 TeV per proton

40 millions of bunch crossing /s

 ~ 20 proton-proton interactions each 25 ns,

resulting in hundredths of particles

Detector response ~1 MByte of data (after zero suppression)

 \Rightarrow 4 × 10¹³ Bytes (4000 GB) / s

Not possible to record!!!

Physics at Future Colliders, Jan. 11 2006

Need for trigger (2)

But most of events is not very interesting (classical physic)

Signature: low transverse momentum (p_T)

We are looking for very rare events heavy particles were produced

Decay into high energy objects (hardronic jets, leptons, photons)

Signature: high transverse momentum (p_T)

Physics at Future Colliders, Jan. 11 2006

CMS/LHC Trigger Physics

Standard model Higgs (high luminosity) • H (80 GeV) $\rightarrow \gamma \gamma$ • H (120 GeV) \rightarrow Z Z* (4 leptons) • H (>500 GeV) \rightarrow leptons (+ v's) • H ($\leq 2M_w$ Associated t or W or Z) \rightarrow b b (lepton + X) **SUSY Higgs (low luminosity)** • (standard model Higgs like channels) • h, H, A $\rightarrow \tau \tau$ (lepton + X) or $\rightarrow \mu \mu$ • $A \rightarrow Z h$; $h \rightarrow bb$ (lepton + X) • p p \rightarrow t t X; t \rightarrow H⁺ b; H⁺ \rightarrow τ µ; t \rightarrow lepton + X; $\tau \rightarrow$ X SUSY sparticle searches (low luminosity) • MSSM sparticle \rightarrow LSP (Missing E₄) + n jets • MSSM sparticle \rightarrow Same sign dileptons + X **Other new particles** • $Z' \rightarrow$ dileptons • Leptoquarks: dileptons **Top physics (low luminosity)** • t \rightarrow lepton + X • t \rightarrow multijets **Bottom physics (low luminosity)** •**b** \rightarrow lepton + X •**b** $\rightarrow \psi \mathbf{k}_{s}$ (leptons + X) QCD • Low luminosity 100 GeV jets • High luminosity 200 GeV jets Physics at Future Colliders, Jan. 11 2006

L1 Trigger objects requirements: • High luminosity (10³⁴ cm⁻²s⁻¹): e/γ (30 GeV), $ee/\gamma\gamma$ (15 GeV) μ (20 GeV), μμ (5 GeV) missing E_{T} (100 GeV), jets (200 GeV) • Low luminosity (10³³ cm⁻²s⁻¹): e/γ (15 GeV), $ee/\gamma\gamma$ (10 GeV) μ (14 GeV), μμ (3 GeV) missing Et (50 GeV)

Karol Buńkowski, Warsaw University

jets (100 GeV)

Evaluates the data of every event and decides whether record the event data to the mass storage or reject it

Physics at Future Colliders, Jan. 11 2006

CMS Trigger and Data Acquisition System

Level 1 Trigger

- Custom electronic @ 40 MHz
- every event is analyzed
- ⇒ pipeline processing – total latency 3.2 µs, including ~2 µs for data transmission

Output ≤ 100 kHz

Event Builder

- switching network (512 to 512 ports)
- total throughput of approximately 500 Gbit/s

High level triggers

- Farm of ~1000 commercial PCs running data selection algorithms effectively on-line data analysis
- Reduces rate from 100 kHz to 100 Hz, for storage on tape

Physics at Future Colliders, Jan. 11 2006

CMS Trigger overview

Physics at Future Colliders, Jan. 11 2006

Overview of Level 1 Trigger

Muon Trigger Overview

Physics at Future Colliders, Jan. 11 2006

Gaseous, fast detectors, optimized for muons measurements

- Gas gap thickness: 2 mm
- Readout Strips: pitch: 0.5 – 4 cm, length: 20 -100 cm
- High Voltage ~ 9.5 kV
- Gas mixture: 96.2% C₂H₂F₄, 3.5% isoC₄H₁₀, 0.3% SF₆
- Time resolution $\sim 1 \text{ ns}$
- Efficiency > 95%
- Noise ~5 Hz cm²

Preproduction versions of boards are tested now!

Trigger Board

Link Board and Trigger Board

Physics at Future Colliders, Jan. 11 2006

The system was proposed and designed by Warsaw CMS group

Participants:

Chambers:

Italy, CERN, Korea, Pakistan, China, Bulgaria Electronic:

Poland (Warsaw), Italy, Finland

- 2000 chambers of different shape and construction
- 165 000 strips 1 bit electronic channels
- ~15 types of electronic boards
- ~ 2000 pieces of electronic boards
- Synchronous system, working @ 40 MHz
- Most boards programmable
- Most boards controlled by computers
- Kilometers of cables (electrical and optical)

Tasks overview

- Chambers production and tests
- Design, production and tests of electronic boards
- Development and tests of FPGA firmware
- Tests of radiation immunity of electronics components
- Configuration, control, monitoring and diagnostic:
 - distributed, multithread computer system
 - data bases: equipment, configuration, condition
 - real-time system performance analysis
- Synchronization: bunch crossing assignment, data stream alignment
- <u>Trigger algorithms development and optimization</u>
- <u>Trigger simulation</u>

Magnetic filed configuration \Rightarrow RPC strips layout

R- φ plane (perpendicular to the beam line)

η plane (along the beam line)

To measure the transverse momentum $R-\phi$ coordinate must be precisely determined

Magnetic filed configuration \Rightarrow RPC strips layout

1152 strips in each layer (disc) \Rightarrow one strip = 0.3125°

Physics at Future Colliders, Jan. 11 2006

RPC Strips η segmentation

Physics at Future Colliders, Jan. 11 2006

RPC Trigger Algorithm: Pattern Comparator (PAC)

Chamber signals are compared to predefined patterns of muon tracks

Required coincidence of hits layers:

- Barrel: 6/6 or 5/6 or 4/6 or 3/4inner layers
- Endcap: 4/4 or 3/4 layers

Fit pattern gives track's **transverse momentum (p_T)** and **sign**

Level of coincidence defines the reconstruction **quality**

Physics at Future Colliders, Jan. 11 2006

Field Programmable Gate Array – programmable chip

Modern FPGA e.g. **Altera Stratix II** (EP2**S90**F1020C3):

- 72 768 LUTs
- 4.5M of RAM bits (in block of different sizes)
- 902 user I/O pins
- DSP blocks (Digital Signal Processing), embedded multipliers

The logic is programmed in **VHDL** (Very High Speed Integrated Circuits Hardware Description Language)

1. Patterns with the same p_{Tcode} and sign are grouped together

2. Detect planes without hits for every patterns group

3. If there was no hit in one or two planes, set all strips of these planes to 1

4. For every pattern the coincidence of 6 planes is required

5. Sort the found tracks candidates

Note: muon hits not fit to any patterns or noise hit occurred in plane without muon hit

Small loss in efficiency and small increase of ghost rate

Physics at Future Colliders, Jan. 11 2006

One PAC chip (1of 396 in whole system):

- Pattern Comparator algorithm
- Input data decompression and synchronization
- Data distribution to PAC units

Implemented in parameterized VHDL code, including configuration file defining

- PAC units inputs,
- quality definition
- and patterns

Compilation results for PAC chip from Tower 0 containing

14 252 patterns defined on 6 planes:

Device: Altera Stratix II EP2S90F1020C3 – 72 768 LUTs :

- LUTs Used: 42 064 (57 %)
- Frequency > 45 MHz
- Compilation Time ~ 2 hours

RPC PAC trigger performance

L1 Trigger requirements:

- Find as many as possible of trigger objects ⇒ Maximization of efficiency above threshold
- Keep output rate below required level

In case of RPC PAC trigger these requirements are realized by:

- During patterns generation (from the simulated tracks) the value of p_T is assigned to patterns in a way assuring > 90% efficiency
- PAC algorithm selects the pattern with best quality and highest p_T

Muons reconstructed with $p_T > 20$ GeV

Trigger performance simulation strategy and conditions

What we are mostly interested in?:

- Trigger efficiency (especially for high p_T muons)
- Trigger rate vs. p_T threshold
- False triggers and ghosts rate

Muon sample:

- single muons originating from vertex,
- flat distribution in p_T (for rate studies p_T spectrum re-weighted with rate parameterization)
- flat distribution in η
- 1.83 millions of events (positive and negative muons),

Simulation conditions

- Luminosity: 10³⁴
- Cluster size distribution

- Chambers noise 5 Hz/cm2
- Chambers efficiency 95%
- Neutron background: nominal level × 0.6

Physics at Future Colliders, Jan. 11 2006

LHC and CMS (including RPC PAC trigger) should start working on the first half of 2007...

Then maybe we will find the event with 4 high-energy muons...

indicates, that we are observing HIGGS!