

The TeV ILC planned for 2015, overlaps with LHC.

Parameters defined by ILCSC scope-panel for ITRP

http://www.fnal.gov/directorate/icfa/LC_parameters.pdf

Baseline

- $\sqrt{s} = 200-500 \text{ GeV},$
- integrated Luminosity 500 fb⁻¹ over 1st 4 years 80% electron polarisation 2 interaction regions with easy switching

Upgrade Options 2 interaction regions with easy switching Anticipate $\sqrt{s} \rightarrow 1 \text{ TeV}$, $\mathcal{L} = 1 \text{ ab}^{-1} \text{ over 4 vears}$ e^-e^- collisions, 50% positron polarisation "GigaZ"; high \mathcal{L} at Z and at WW threshold, Laser backscatter for $\gamma\gamma$ and γ e collisions, Doubled \mathcal{L} at 500 GeV.

Choice among options to be guided by physics needs.

Programme for the TeV ILC

- will depend on what appears, but ILC is needed in every scenario .

If there is a light Higgs of any kind, seen or unseen at LHC, ILC will:

- see it,
- measure its precise mass,
- measure its total and partial widths (BRs), determine its couplings to other particles,
- measure its spin and parity,
- measure Higgs selfcoupling.

Many different scenarios have been investigated...

ILC experiments will have the unique ability to make model-independent tests of Higgs couplings to other particles, at the percent level of accuracy

This is right sensitivity to discover extra dimensions, a new source of CP violation, or other novel phenomena

An Optimistic Conclusion: PDG 2016?

GAUGE AND HIGGS BOSONS

Н	J ^{PC} =0 ⁺⁺ [a]	
	Charge $= 0$	
	Mass m=120.	0±0.040 GeV ^[b]
	Full Width F	$=3.6\pm0.2 \text{ MeV}^{[a]}$
H DEC	CAY MODES ^[b]	Fraction .
bb		(67.8 ±1.6) %
сс		$(3.08 \pm 0.25)\%$
ττ		(6.8 ±0.35)%
gg		$(7.04 \pm 0.5)\%$
γγ		$(0.21 \pm 0.05)\%$
WW		$(13.3 \pm 1.3)\%$
		and the second second second second

SUMMARY TABLES OF PARTICLE PROPERTIES

Extracted from the Particle listings of the

Review of Particle Physics

Published in Eur. Jour. Phys **C3**, 1 (2014) Available at http://www.eilamgross.com

Like the Z boson measurements at LEP

ttH production Yukawa coupling at LHC

- controllable QCD uncertainties (Spira et al, Dawson at al) 10-15%
- rather low rate
- final States $H \rightarrow bb$ and $H \rightarrow WW$ being analysed in ATLAS (more to come...)

Example 1:Precision Measurements of *tt-Higgs Coupling*

Desch & Schumacher, hep-ph/0407159

First Very Preliminary Result

Next: BG uncertainties, closer look at SF uncertainties

$\sqrt{s}=800 \text{ GeV LC improves } g_{tth} \text{ further}$

Cannot observe $e^+e^- \rightarrow tth$ at $\sqrt{s} = 500 \text{ GeV LC}$

Dawson & Reina, Beenacker et al

Desch & Schumacher, hep-ph/0407159

Combine LHC data on heavy Higgs with LC data on the light Higgs

Desch, Gross, Heinemeyer, Weiglein

Assume:

LHC information on M_{A} and tan β

 \oplus (LHC \otimes LC) information on stop/bottom masses

⊕ LHC/LC measurement of m_H

Supersymmetry at a LC

FNAL October 2003

LHC/LC interplay prospects

Albert De Roeck (CERN) 1

LHC & LC improves SUSY mass resolution

- LSP mass constrained at LHC at 10% level
- LSP mass at LC to < 1%

 \Rightarrow LC input improves accuracy significantly

Weiglein, LHC/LC Study

Using the χ^0 from the LC

	LHC LHC+LC (0.2%)				.2%) LHC+LC (1.0%)
	$\Delta m_{\tilde{\chi}^0_1}$	4.8		0.19	1.0
300 fb ⁻¹ @LHC	$\Delta m_{\tilde{l}_B}^{\alpha_1}$	4.8		0.34	1.0
	$\Delta m_{ ilde{\chi}_2^0}$	4.7		0.24	1.0
The last of the base	$\Delta m_{ ilde q_L}$	8.7		4.9	5.1
Takes into	$\Delta m_{\tilde{b}_1}$	13.2		10.5	10.6
energy scale					
uncertainties		LHC	LHC	C+LC (0.2%) LHC+LC (1.0%)
	$\Delta m_{\tilde{g}}$	8.0		6.4	6.5
∆ M values in GeV	$\Delta m_{\tilde{q}_R}$	11.8		10.9	10.9
	$\Delta m_{\tilde{b}_1}$	7.5		5.7	5.7
Numbers are	$\Delta m_{\tilde{b}_2}$	7.9		6.3	6.3
nnoliminany	-2			1 (1.0
prenninary	$\Delta m_{\tilde{\ell}r}$	5.0		1.6	1.9

Significant improvements with an LC if $m(\chi)$ measured to better than 1%

Look for heaviest neutralino at LHC with LC prediction

- This example requires that machines run at same time
- With LC input, LHC measures:
 - $\Delta(M\chi_1^0) = 2.5 \text{ GeV}$
- Without LC input, LHC measures:
 - $\Delta(M\chi_1^0) = 5 \text{ GeV}$
- Mismatch between LC/LHC results implies new physics
- Marginal signal at LHC found with LC input

Invariant mass spectrum of heavy neutralino/chargino decay chains

Desch, Kalinowski, Moortgat-Pick, Nojiri, Polesello

Neutralino DM in mSUGRA

Cosmology excludes much of parameter space (Ω_{γ} too big)

Cosmology focuses attention on particular regions (Ω_{χ} just right)

 $m_{1/2}$

Choose 4 representative points for detailed study Baer et al., ISAJET Gondolo et al., DARKSUSY Belanger et al., MICROMEGA

BULK REGION LCC1 (SPS1a)

 m_0 , $M_{1/2}$, A_0 , $tan\beta = 100$, 250, -100, 10 [μ >0, $m_{3/2}$ > m_{LSP}]

• Correct relic density obtained if χ annihilate efficiently through light sfermions:

 Motivates SUSY with light χ, *Ĩ*

Allanach et al. (2002)

Accuracies of determining the LSP mass and its relic density [Alexander et al., hep-ph/0507214]

Sensitivity of pMSSM parameters to experimental inputs (Lafaye, for SPA project, Beijing 17/8/04)

Vary parameter by $\pm 1\sigma$ and determine individual $\Delta\chi^2$ contribution of the various observables using Fittino

Only a combined LHC and LC study allows a complete fit without fixing any parameter

Comparison of LHC and ILC+LHC

Philip Bechtle, LCWS 05, 19.03.2005 - p.20

Ultimate SUSY Synergy: Learning about SSB

Allanach, Grellscheid, Quevedo

Discrimination between different SUSY-breaking scenarios

Need information from slepton and squark sector! Need percent level accuracy

Ultimate SUSY Synergy: Learning about SSB

Blair,Martyn,Polesello,Porod,Zerwas

Model-independent bottom-up approach: Combined information on Low-Energy SUSY parameters as input to RGE evolution

Klaus Desch I HC+I C Synergy: SUSY as a case study 07/01/04

Ultimate SUSY Synergy: Learning about SSB

Blair,Martyn,Polesello,Porod,Zerwas

Klaus Dosch, LHC+LC Synorgy: SUSV as a case study, 07/01/04

SUSY searches at LHC

- With input from ILC measurements: $m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}}, m_{\tilde{\nu}}$
 - \longrightarrow Precision of 2% for $m_{\tilde{\chi}^0_3}$ may be possible:

 $\left(m_{ ilde{\chi}_i^0}$ = (367 \pm 7) GeV ight)

→ Compatible with mass predictions in MSSM, however, not with predictions for small gaugino component!

Other possibility: Interpretation of measured gaugino as $\tilde{\chi}_4^0$: Incompatible with cross section measurements at ILC!

Heavy Higgses at LHC

S. Kraml

LHC Discovery Potential

F

 $\tan\beta = 10, M_{1,2,3}(m_z) = 100,200,300 \text{ GeV}$ Standard decay modes: 250 $qq \rightarrow h/a \rightarrow \gamma\gamma$ associated Wh/a or $t\bar{t}h/a$ prod. 200 with $\gamma\gamma l^{\pm}$ in the final state 150 $t\bar{t}h/a$ prod. with $h/a \rightarrow b\bar{b}$ $b\bar{b}h/a$ prod. with $h/a \rightarrow \tau^+ \tau^-$ 100 $gg \rightarrow h \rightarrow ZZ^{(*)} \rightarrow 4$ leptons $gg \to h \to WW^{(*)} \to l^+ l^- \nu \bar{\nu}$ 50 $WW \rightarrow h \rightarrow \tau^+ \tau^ WW \to h \to WW^{(*)}$ 0 25 15 30 5 10 20 0 N_{SD}^{max} $WW \rightarrow h \rightarrow invisible$ for an integrated luminosity: $L = 300 f b^{-1}$

see the talk of J. Gunion, at LHC-ILC on Wednesday

Investigation of different scenarios

Gravity-mediated SUSY with non-universal Higgs masses

 \Rightarrow ILC reach can exceed LHC reach

 \rightarrow See talk by H. Baer at LHC / ILC meeting

Another idea:

MSSM Higgs sector with CP-violation

LEP cannot exclude a very light (mainly CP-odd) Higgs

Detection of H2 seems guaranteed at LHC and ILC but H1 may be more difficult.

Question: could LHC see a low-mass (20-50) GeV bbbar resonance if ILC tells its mass?

Higgs and Radion searches

Battaglia, ADR, DeCurtis, Dominici, Gunion

Detectability at the LHC versus mixing ξ and mass of the radion M ϕ

LHC has regions from the parameters space where it cannot find the Higgs LC covers these regions and will always see the Higgs LC can provide evidence for Higgs/ ϕ mixing in a large region of phase space

Z' bosons at the LHC

- Higher energy and more statistics than Tevatron
- Discovery in leptonic channels $pp \rightarrow Z' + X \rightarrow l^+ l^- + X$ up to $M_{Z'} \sim 5$ TeV
- Jet channel also possible, but large QCD background

 5σ discovery contours:

ATLAS TDR '99

Z' bosons at a future linear collider

Heavy Z' bosons $M_{Z'} > 1$ TeV:

- Small Z-Z' mixing \rightarrow negligible effect on Z-pole data
- Propagator effects of Z' modify

$$\sigma$$
 \sqrt{s} m_{ff}

 \rightarrow High luminosity 500–1000 fb⁻¹ allows sensitivity for $M_{Z'} \gg \sqrt{s}$

 $e^+e^- \xrightarrow{\gamma, Z, Z'} f\bar{f}$

Sensitive observables:

 total cross-section σ_{tot}
 forward-backward asymmetry A_{FB}

 With e⁻ beam polarization

- left-right asymmetry A_{LR}
- polarization asymmetry A_{pol}

Projected sensitivity

 Look for deviations from SM background

$$e^+e^- \xrightarrow{\gamma^*,Z^*} f\bar{f}$$

- Assume $P(e^-) = 80\%$ $P(e^+) = 60\%$ (slight improvement from e^+ pol.)
- Combine all observables $\sigma_{\rm tot}, A_{\rm FB}, A_{\rm LR}, A_{\rm pol}$

case A,B : different assumptions about sys. errors

S. Riemann '00

Special case: Z_{B-I}

Z' has pure B-L couplings \rightarrow corresponding to $z_u = z_q$

 \Rightarrow No mixing between Z and Z'

(i.e. no constraints from Z-pole)

New Gauge Theories

FNAL October 2003

LHC/LC interplay prospects

LHC/ILC Physics: new particle

- ILC measures couplings of Z' to find out what it means
- If here, related to origin of neutrino masses
- If here, related to origin of Higgs
- If here, Z' comes from an extra dimension of space
- These are great discoveries!

Precision measurements

Assume no Z' etc. detected directly at the LHC Revisit the Z with a Z- factory (Giga-Z: 10⁹ Zs!)

Example interplay scenarios My GeV Little Higgs: assume LHC sees Higgs at 300 GeV ⇒ Giga-Z can estimate the mass of the Z' (U(1) singlet), say 5 GeV Universal extra dimensions: assume LHC sees a light Higgs only. ⇒ Giga-Z demonstrates that direct and indirect Higgs mass meas. disagree Improve search strategy or increase energy of LHC (a little)

FNAL October 2003

Reconstruction of a 6 TeV Z'(χ model) (95% C.L.):

- $\mathcal{L}_{int} = 1ab^{-1}, \quad \Delta \mathcal{L}_{int} = 0.2\%$
- $P_{-} = 0.8$, $P_{+} = 0.6$, $\Delta P_{-} = \Delta P_{+} = 0.5\%$
- Δ sys(lept)=0.2%

More on new Z's

- We need to measure:
 - Z' mass and couplings
 - Determine underlying model
- Processes for Search
 - LHC: Drell-Yan
 - LC:e⁺e⁻→ff
 - look for interference effects
- Kinematic limits:
 - LHC: $M_{Z'} < 5$ TeV, LC: $M_{Z'} < \sqrt{s}$

Contact Interactions

• New interactions can be parametrized in terms of 4-fermion interactions if $\sqrt{s} \ll \Lambda$

$$L = \sum_{i,j=L,R} \eta_{ij} \frac{g^2}{\Lambda_{ij}^2} (\bar{f}_i \gamma^{\mu} f_i) (\overline{F}_i \gamma^{\mu} F_i) \qquad \Lambda \sim M_{Z'}$$

Reach in Tev: LHC

If contact interaction is exchange of spin-1 Z', then angular distribution $(1\pm\cos\theta)^2$

95% cl limits.

LHC: 100 fb⁻¹

LC: L=1 ab⁻¹, \sqrt{s} =500 GeV, P.=.8, P₊=.6

Model		LL	RR	LR	RL	LL	RR	LR	RL
eeqq	Λ_+	20.1	20.2	22.1	21.8	64	24	92	22
	Λ.	33.8	33.7	29.2	29.7	63	35	92	24
ееµµ	Λ_+					90	88	72	72
	Λ_					90	88	72	72
eeee	Λ_+					45	43	52	52
	Λ.					44	42	51	51

Riemann, LHC/LC Study

SUPERWIMPS

Feng, Rajaraman, Takayama (2003)

Gravitinos naturally inherit the right density, but they interact only gravitationally – they are "superWIMPs"

WORST CASE SCENARIO?

Looks bad – dark matter couplings suppressed by 10⁻¹⁶

But, cosmology \rightarrow decaying WIMPs are sleptons: heavy, charged, live ~ a month – can be trapped, then moved to a quiet environment to observe decays.

How many can be trapped?

Hamaguchi, Kuno, Nakaya, Nojiri (2004) Feng, Smith (2004)

Large Hadron Collider

If squarks, gluinos light, many sleptons, but most are fast: O(1)% are caught in 10 kton trap

International Linear Collider

 $m_{\tilde{\tau}_R}$ 219.3 GeV } NLSP only

Can tune beam energy to produce slow sleptons: 75% are caught in 10 kton trap

Shufang Su, LCWS05

Identifying a scenario

2 suggestions from J. Ellis:

"Suppose that the LC discovers a (meta)stable massive charged particle, such as a stau in a model with a gravitino LSP. It might be that the LHC experiments would/could modify their trigger and/or even their TOF systems so as to collect these more efficiently."

"Alternatively, suppose

that the LC discovers a massive charged particle that decays rapidly into a lighter neutral particle with a very small mass difference, as occurs in models with a neutralino LSP in the coannihilation region. Perhaps the LHC experiments would/could modify their lepton p_T triggers (replacing them by some other event characteristic? at the expense of some other triggers?) so as to collect these more efficiently." Other ideas from previous CERN meeting:

heavy stable charged particles (R- hadrons)
 ILC input: charginos/neutralinos (not too light but not too heavy)
 then use GUT relation to predict m(gluino)

heavy charginos with low-pt leptons ?
 ILC can predict chi03/chi04/chi+2 from chi01/chi02/chi+1
 if cascades at LHC are complicated mass/coupling predictions may help

- going down in energy ? (move from g-dominated to q-dominated pdf's to reduce bkgd if low-mass hadronic resonance exisits)
- very light rare di-lepton resonance (e.g. gg->"A"-> mumu in CPV MSSM)
- Z' with BR(Z'->hadrons) = 1:
 open a mass-window in jet-jet trigger

Collider Phenomenology

(Birkedal, Matchev, Perelstein)

Common feature of the Higgless models: the scale of perturbative unitarity violation is raised by new massive vector bosons whose masses and couplings are constrained by *unitarity sum rules*.

Example: $W_L Z_L$ elastic scattering

A good test \rightarrow analysis of the vector boson fusion at future colliders (the most promising channel for Higgsless models with fermion delocalization since the KK resonances are fermiophobic)

Birkedal, Matchev, Perelstein: simplifying assumption that the sum rules are saturated by the first KK resonance V^1

$$g_{WV^1Z} < \frac{g_{WWZ}M_Z^2}{\sqrt{3}M_V^1M_W}, \quad \Gamma(V^1) = \frac{\alpha(M_V^1)^3}{144s_W^2M_W^2}$$

a very narrow and light resonance in WZ scattering

ILC Workshop, 14-17 Nov 2005, Vienna

Playing with fermion couplings in Higgsless models (page 19)

Higgsless Models @ the LHC

(Birkedal, Matchev, Perelstein)

Typical final state includes two forward jets + a pair of vector bosons Cuts to suppress the SM BCKGND and possible signal from Drell-Yan: $2 < |\eta| \le 4.5, E > 300 GeV, p_T > 30 GeV$ The gold-plated final state is 2j + 3l+missing E_T Discovery reach @ LHC (10 events) $M_V^1 \le 550(1000) \ GeV$ with 10(60) fb^{-1}

To identify the resonance as a part of a Higgsless model \rightarrow test the *unitarity sum rules*: measure of the mass and couplings \rightarrow a task for the ILC

ILC Workshop, 14-17 Nov 2005, Vienna

Playing with fermion couplings in Higgsless models (page 20)

Higgsless Models @ the ILC

(Birkedal, Matchev, Perelstein)

The first KK excitations of the Higgsless models are expected to be below 1 TeV and can be produced @ the ILC by bremsstrahlung of W and Z off the initial state e^+ and e^- .

The ILC searches appear promising.

Further studies to be done, for example: study of the W^+W^- channel, include the electron beam polarization, consider the production of longitudinally polarized gauge bosons, consider the beam energy spread issues.

Motivation: Why is the top quark so interesting?

- Top quark sector of the SM is NOT established yet!
 - Possible anomalous couplings in $tbW, t\bar{t}Z/\gamma$
 - Does the top mass come from a single Higgs? $(y_t \Leftrightarrow m_t)$
- Top quark plays a key role in EWSB
 - Many models distinguish top from light quarks
 - Precise top mass determination is clue to New Physics

MSSM parameters varied SM Higgs varied (Heinemeyer+Weiglein Snowmass)

Top Threshold: experimental studies

```
9+1 point threshold scan at TESLA (\mathcal{L} = 300 \text{ fb}^{-1}):
```

Martinez + Miquel

Use of σ_{tot} , peak of the top momentum distribution and A_{FB} as observables:

* Exp. accuracy with multi-parameter fit (3% TH-error on σ_{tot} , beam spectrum known):

 $\rightarrow \Delta m_t \sim 20 \text{ MeV}, \ \Delta \Gamma_t \sim 30 \text{ MeV}, \ \Delta \alpha_s \sim 0.0012$

High Precision Top Mass

<u>Threshold Scan:</u> $\sqrt{s} \simeq 350$ GeV (Phase I)

 \triangleright count number of $t\bar{t}$ events color singlet state 0.6 background is non-resonant 0.4 physics quite well understood 0.2 (renormalons, summations)

 $\rightarrow \delta m_t^{
m exp} \simeq 50 \ {
m MeV}$ $\rightarrow \delta m_t^{\mathrm{th}} \simeq 100 \ \mathrm{MeV}$ (param. est. \rightarrow many authors) What mass? $\sqrt{s}_{\rm rise} \sim 2m_t^{\rm thr} + {\rm pert.series}$ (short distance mass: $1S \leftrightarrow \overline{MS}$)

<u>Reconstruction:</u> any \sqrt{s} (Phase I + II) Chekanov, Morgunov: $\triangleright e^+e^- \rightarrow 6$ jets (y_{cut}^6) ▷ b-tagging $\triangleright \vec{P}_1 + \vec{P}_2 < \Delta_p$ $\triangleright M_1 + M_2 < \Delta_M$

 $\rightarrow \delta m_t^{\mathrm{ex,stat}} \simeq 100 \ \mathrm{MeV}$ $(\mathcal{L} = 300 \, \text{fb}^{-1})$

LCWS 05, Stanford, March 18-22 2005

A. H. Hoang – p.8

Precise m_t championed by Heinemeyer et al

(hep-ph/0306181, and LHC/LC report)

A couple of their examples

a) What it does for The Standard Model \rightarrow

"Unless $\delta m_t < 100 MeV$, it is the dominant error on many precision measurements."

b) what precise \mathbf{m}_t would do for MSSM

Example: tt-Z, tt-Photon

Comparison: lepton + jets, p_T -distribution (1 σ limits)

talk by U. Baur

coupling	LHC (300 fb $^{-1}$)	e^+e^- (snowmass)
$\Delta \widetilde{F}_{1V}^{\gamma}$	$+0.043 \\ -0.041$	$+0.047 \\ -0.047$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{1A}^{\gamma}$	$+0.051 \\ -0.048$	$^{+0.011}_{-0.011}$, 100 fb $^{-1}$
$\Delta \widetilde{F}_{2V}^{\gamma}$	$+0.038 \\ -0.035$	$^{+0.038}_{-0.038}$, 200 fb $^{-1}$
$\Delta \widetilde{F}_{2A}^{\gamma}$	$+0.16 \\ -0.17$	$^{+0.014}_{-0.014}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1V}$	$+0.34 \\ -0.72$	$^{+0.012}_{-0.012}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{1A}$	$+0.079 \\ -0.091$	$^{+0.013}_{-0.013}$, 100 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2V}$	$+0.26 \\ -0.34$	$^{+0.009}_{-0.009}$, 200 fb $^{-1}$
$\Delta \widetilde{F}^Z_{2A}$	$+0.35 \\ -0.35$	$^{+0.052}_{-0.052}$, 100 fb $^{-1}$

$$\begin{split} \Gamma^V_\mu &= ie \left\{ \gamma_\mu \left(\tilde{F}^V_{1V} + \gamma_5 \tilde{F}^V_{1A} \right) \right. \\ &+ \frac{(q-q')_\mu}{2m_t} \left(\tilde{F}^V_{2V} + \gamma_5 \tilde{F}^V_{2A} \right) \right\} \end{split}$$

•	$\mathcal{O}(\%)$	precision	at	ILC
---	-------------------	-----------	----	-----

• polarization crucial: $P(e^-) = 0.8$

General needs:

- \rightarrow coherent conventions
- \rightarrow fully exploit of polarization
- \rightarrow vary more than 1 coupling
- \rightarrow optimized observables
- \rightarrow QCD corrections

LCWS 05, Stanford, March 18-22 2005

ttV at the LHC and the ILC

U. Baur

- Example: LHC (ILC) can measure F_{1Z} to 50% (1%), F_{2Z} to 8% (1%)
- Improvement from e^- polarization by a factor of 2-3 (talk by G. Moortgat-Pick)
 - Positron polarization not studied ⇒ needs to be done!
 - ! Correlated analysis done only for LHC; ILC study varies couplings independently

Electroweak precision observables (EWPO):

- the W boson mass M_W
- the effective leptonic mixing angle $\sin^2 \theta_{eff}$

and in addition:

- the top quark mass m_t
- the Higgs boson mass m_h

Experimental errors:

	today	LHC	LC	GigaZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	17	14-20	_	1.3
δM_W [MeV]	34	15	10	7
δm_t [GeV]	5.1	1-2	0.2	0.1
δm_h [MeV]	_	200	50	_

- \Rightarrow LC more capable than LHC
- ⇒ EWPO alone: no LHC/LC interplay

Motivation: α_s measurement

- High precision α_s determination is crucial for accurate prediction of signal/background processes.
- α_s the least precise input for coupling unification in SUSY, GUT's:

The Energy Frontier: why ILC?

- We expect the greatest richness at the energy frontier
- Few phenomena will manifest themselves in only one machine

 We will build on the foundation of LHC to make major discoveries at ILC

2020. Both pillars needed to see to the Temple of Unification

We need the LHC asap, for lots of very good reasons.

We need 2 LCs

The TeV International Linear Collider, also asap.

Then a multi-TeV CLIC

+ (maybe) a Larger Hadron Collider

David J. Miller UCL; Linear Collider Physics. ICHEP Beijing 22/8/04